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Abstract—The quality of a clustering not only depends on the
chosen algorithm and its parameters, but also on the definition of
the similarity of two respective objects in a dataset. Applications
such as clustering of web documents is traditionally built either
on textual similarity measures or on link information. Due to
the incompatibility of these two information spaces, combining
these two information sources in one distance measure is a
challenging issue. In this paper, we thus propose a geodesic
distance function that combines traditional similarity measures
with link information. In particular, we test the effectiveness
of geodesic distances as similarity measures under the space
assumption of spherical geometry in a 0-sphere. Our proposed
distance measure is thus a combination of the cosine distance
of the term-document matrix and some curvature values in the
geodesic distance formula. To estimate these curvature values, we
calculate clustering coefficient values for every document from
the link graph of the data set and increase their distinctiveness
by means of a heuristic as these clustering coefficient values are
rough estimates of the curvatures.

To evaluate our work, we perform clustering tests with
the k-means algorithm on a subset of the English Wikipedia
hyperlinked data set with both traditional cosine distance and
our proposed geodesic distance. Additionally, taking inspiration
from the unified view of the performance functions of k-means
and k-harmonic means, min and harmonic average of the cosine
and geodesic distances are taken in order to construct alternate
distance forms. The effectiveness of our approach is measured
by computing micro-precision values of the clusters based on the
provided categorical information of each article.

I. INTRODUCTION

The principal aim of the information retrieval systems is to
retrieve only the relevant documents from the document col-
lection. In order to determine the relevance, similarity/distance
measures are utilized on the document representations. The
representations are in terms of some low-level features that
are directly measurable from data. Document lengths, the fre-
quency of words in documents are examples of such features.

In the classical IR implementation, feature vectors are
formed for documents and distance between these vectors
is calculated to relate them. The ordinary distance metric is
position-independent in the sense that if two data points are
shifted by the same amount in one coordinate the distance
between them does not change. In other words, it does not
take into account the topology of the document space and
assumes that the space is flat (zero curvature). A curvature
metric can therefore provide additional information about the
data points and is dependent on the position in the space.

In order to address the document semantics in a better
way; there is a need for a generalization that captures all
the geometric structure of space including the notions of
distance, angle, volume, and curvature [1]. The formulation
of this generalized metric (metric tensor) varies according
to peculiarities of the space. Thus, the distance computation
is dependent on the inherent space. This paper proposes a
geodesic distance metric that extends the classical distance
computation with the measurements of curvatures so that the
specificities of the document space can be reflected in a better
way.

The geodesic distance metric provides a way of combining
features, which can be applied to data sets that offer multiple
feature spaces. For our experiments, the selected data set
contains linked text documents on which link and text based
features can be calculated. The text analysis is conducted using
the Vector Space Model (VSM) [2] of information retrieval.
The term weights are calculated based on term frequencies
plus some normalization mechanisms such as inverse doc-
ument frequencies (idf). The regular cosine distance that is
applied to the tf-idf version of the term-document vectors is
used as the basic similarity measure.

In the computation of the geodesic distances, the cosine
distance is combined with the curvature measurements. The
curvature values are based on the clustering coefficient values
from the link graph given the fact that the clustering coefficient
values are rough estimates of the curvatures [3].

The importance of the geodesic distance metric lies in the
fact that it utilizes a mathematical cost function for combining
links with the text similarity measures. There exists link-based
ranking approaches as well as retrieval models incorporating
link evidence. However, there is a lack of optimal cost func-
tions to combine cosine, link indegrees, PageRank, etc.

The experiments in this paper are conducted on the Wiki-
pedia XML Corpus [4] English subset. Wikipedia seems a
good selection because it is a known fact that in contrast
to general web links, Wikipedia links are good indicators
of relevance. In addition to this; in Wikipedia, outlinks and
inlinks are similar in character and both contribute to the
semantic analysis of the documents unlike the Web in which
indegrees have a dominant role in determining the semantic
relatedness [5]. Thus, the clustering coefficient computations
that are based on the undirected link graph of the collection
are plausible choices as link-based features for the fact that



there is symmetry in the semantic nature of Wikipedia (if A
is relevant to B then B is relevant to A, too).

For measuring the effectiveness of the proposed approach,
we use data clustering algorithms. An overwhelming theme
for different data clustering techniques/algorithms is to convert
the objective into an optimization problem and propose an op-
timization (performance) function accordingly. The proposed
optimization function is expected to measure the goodness
of the data analysis objective at hand. Thus, dependable
performance functions are of vital importance in the field.

We are given the Wikipedia categorical information as part
of the data set. The most common text clustering algorithm
k-means [6] is used for the tests. The rationale for selecting
k-means is two-fold. First, as we already know the number
of categories to look for in the data set, we easily set the k,
the main argument of the algorithm. Second, there exists an
abstract framework for integrating multiple feature spaces for
the k-means algorithm. The second property can be attributed
to the simple but powerful nature of the k-means performance
function. For practical reasons the algorithms are run on some
subsets of the whole data collection.

The rest of the paper is organized as follows: In Section II,
we provide some related work to define the context and give
an overview of the state-of-the-art. In Section III, we discuss
the geometric meaning of the geodesic distance in comparison
to the existing similarity/dissimilarity measures and give the
calculation scheme. In Section IV, we provide detailed in-
formation about the experimental setup-data set, algorithms,
parameters, evaluation metrics and depict the experimental
results. Finally, we conclude this paper and raise some issues
for future work in Section V.

II. RELATED WORK

Ma et al [7] claim that they are the first researchers that
use geodesic distance in text mining related research areas.
Their work deals with the query-based sentence retrieval and
compares geodesic with cosine distance in this context. The
method constructs a graph of all sentences including the
candidate (query) ones. In order to define the local neigh-
borhood, a threshold variable epsilon is introduced. If the
distance between two sentences are below the threshold value
then a direct link is established between them. The geodesic
distances are computed over the links by utilizing shortest-
path algorithms on the sentence graph. Resulting rankings and
correct ratio plots for given queries according to both geodesic
distance and cosine are provided. The results show that for
the particular values of the parameter epsilon the correct ratio
values of the geodesic distance are superior to cosine’s, for
some other range it degenerates the cosine angle distance.

In hyperbolic IR [8], which is non-Euclidean, a geometric
meaning is introduced to the positions in space. The query
vector is assumed to be at the center of the hyperbolic sphere
and the other documents are evaluated according to their
hyperbolic distances to the query vector at the center of the
sphere. In short, if a non-Euclidean aspect is to be introduced
to a metric space model, the points should be specialized.

Another important point is that change of hyperbolic distance
according to the radius of the hyperbolic sphere as a parameter
introduces equivalent ranking as traditional similarity mea-
sures plus weighting schemes.

Xiao et al [9] associate with the geodesic a cost based
on length and sectional curvature. The sectional curvature
is determined by the degree to which the geodesic bends
away from the Euclidean chord. Hence for a geodesic in
space, the sectional curvature can be estimated easily if the
Euclidean and geodesic distances are known. Put it another
way if the Euclidean distance and sectional curvature values
are known, geodesic distances can be easily computed. Lou
[3] states that clustering coefficient values are rough estimates
of the sectional curvatures. Getting the sectional curvature
values from the link graph, taking cosine from the term-
document matrix, the geodesic distance computation can be
easily adapted to the text documents with links.

In PageRank [10], global link structure of the document
set is utilized to calculate the ranks of the documents. The
authority concept is introduced in HITS [11] to determine
the importance of the documents. An outlink from a source
document to a target one means that the source gives some
authority to the target. Additionally, it is also critical from
whom you get authority. Therefore, there are a set of hub
documents from which having inlinks is more valuable. This
hub-authority pattern is the key idea and applied in a local
context after filtering out documents by text-based queries.

Language models provide mechanisms to utilize link evi-
dences along with the text content scores. The experimental
results of Kamps and Koolen [5] show that local degree
priors are better than the global degree priors and weighted
local/global priors are even more helpful. Thus, the proposed
approach is plausible as it presents a compromise between
global and local by evaluating local connectivity on the global
link graph.

Strehl et al [12] provide a framework for evaluating the
impact of similarity measures on clustering web pages. In this
work, the fundamental similarity measures are discussed along
with their geometric interpretation. The clustering algorithms
that are better suited to term-document matrix based text data
are determined and the existing similarity/distance measures’
performance with these algorithms are stated.

Oikonomakou and Vazirgiannis [13] review web document
clustering approaches. They classify the existing algorithms
according to characteristics or features that are used. The
processed features in the web context are text and/or link-based
features. Thus; text-based, link-based, and hybrid approaches
exist for web document clustering. This work proposes a
hybrid approach for this purpose.

In their work which combines the link-based measures with
the content-based classifiers, Calado et al [14] state that the
effectiveness of the combination approach may depend on the
importance given to each of the sources of evidence to be
combined. More weight should be given to those that provide
more reliable information. They recognize finding the ideal
weights for each of the evidences to be combined as the funda-



mental problem. They set their objective as pursuing methods
to automatically determine such weights and alternative ways
to combine link-based and content-based evidences.

Yang [15] points out that there is no unanimity in the re-
search findings related to link analysis and/or fusion methods.
Some claim that combining results of various retrieval methods
is beneficial to retrieval performance, others’ results state that
fusion in general seemed to decrease retrieval performance.
The main question according to Yang is finding out the
reason of the general failure of the fusion may be due to
the characteristics of test collections, failings of link analysis,
inadequacies of fusion formula, or combinations of all or any
of the above. He believes the future fusion efforts should focus
on discovering the fusion formula that can best realize the
fusion potential of combining diverse retrieval methods.

In this work, we attempt to use geodesic distances to better
address the semantics of linked text documents. In other words,
geodesic distance formula is proposed as a way of combining
text-based and linked-based features. This paper is an extended
version of the SSCI CIDM 2011 paper [16]. Our extensions
include the evaluation of k-harmonic means algorithm to test
the effect of initialization in the precision results of cosine
and geodesic in k-means algorithm. Moreover, an alternate
distance out of cosine and geodesic is calculated by taking
the minimum and harmonic average of the given distances.

III. GEODESIC DISTANCE

The distinguishing property of the proposed geodesic dis-
tance is that local curvature values are considered in the calcu-
lation of the distance between the objects. The intuition behind
the approach comes from the Riemannian geometry where a
local curvature of uniform sign across the manifold implies
strong global properties. Thus, we take into consideration the
sign of the curvature in the algorithm and are in the pursuit
of such global behaviors.

This intuition in mind, we come up with a calculation
scheme for geodesic distance. The proposed scheme is based
on the relationship between Euclidean and geodesic distances
on the unit circle as shown in Figure 1. In order to introduce
the geodesic similarity measure for the linked text documents,
the formula is formed using the relationship between Eu-
clidean and geodesic distances on the unit circle as shown
in Figure 1. The line length between two points on a unit
circle represents the Euclidean distance while the arc length
between those points represents the geodesic one.

u v

Geodesic distance
Euclidean distance

2θr

Fig. 1. Euclidean and geodesic distances on a circle.

The line length is computed using the respective triangle
and can be stated as follows:

dE(u, v) = 2r sin θ (1)

The arc length is given by the following formula:

dg(u, v) = 2rθ (2)

The sine in the Euclidean distance formula can be approxi-
mated using the Maclaurin series:

dE(u, v) = 2r(θ − 1

6
θ3 + ...) (3)

Substituting for θ obtained from the geodesic distance, we
have

dE(u, v) = dg(u, v)−
d3g(u, v)

24r2
(4)

Finally, radius is represented in terms of the curvature of the
circle as follows;

r =
1

κ
(5)

and the resulting equation is solved for the geodesic distance.

dg(u, v)
3 − 24

1

κ2
dg(u, v) + 24

1

κ2
dE(u, v) = 0 (6)

In this equation, the parameters are dependent on κ and
dE(u, v) values respectively. Thus, geodesic distances can
be calculated in terms of κ curvature values and dE(u, v)
Euclidean distances.

As we work with linked text documents in our context, we
compute the clustering coefficient values from the link graph to
substitute for κ curvature value and replace dE(u, v) Euclidean
distance by the cosine text similarity measure.

The Maclaurin series expansion in equation 3 can be ex-
tended by one more term such as the following:

dE(u, v) = 2r(θ − 1

6
θ3 +

1

120
θ5...) (7)

Again by substituting for θ obtained from the geodesic
distance, the equation becomes:

dE(u, v) = dg(u, v)−
d3g(u, v)

24r2
+
d5g(u, v)

1920r4
(8)

Lastly, radius is replaced by the curvature equivalent and
the following quintic equation is obtained:

d5g(u, v)−
80

κ2
d3g(u, v) +

1920

κ4
dg(u, v)−

1920

κ4
dE(u, v) = 0

(9)
The clustering coefficient is defined as Ci = 2n/(ki(ki−1)),

where n denotes the number of direct links connecting the
ki nearest neighbors of node i [17]. It is the proportion of
links between the vertices within its neighborhood divided by
the number of links that could possibly exist between them.
The coefficient represents the local connectivity of a document
by giving a measure of the degree of interconnectedness in
the neighborhood of a node. A node whose neighbors are all



connected to each other has C = 1, whereas a node with no
links between its neighbors has C = 0.

The clustering coefficient provides an approximation of the
scalar curvature in the sense that C = 0 implies that the scalar
curvature at that vertex is negative, while C = 1 means that
the scalar curvature is positive, with C = 1/2 the borderline
case of vanishing scalar curvature. In our case, each document
is thus assigned one clustering coefficient value.

The geodesic distance equation given in equation 6 is a
special cubic equation in which the coefficient of the squared
term is zero. In this cubic form there are two complex roots
and one real root and the average of the roots of the equation
is zero. For solving the equation Cardano’s method for cubics
is utilized [18]. In our experiments, the real root is used as
the geodesic distance. The quintic geodesic distance equation,
on the other hand, can be solved numerically by Newton’s
method.

Geodesic distance can be seen as a weighted distortion
measure in the clustering context in that the weights are
taken from the link graph and the cosine distance is used as
a base distortion measure. Distortion measures are used to
evaluate the results of the clustering along with the ground
truth categorization. The weighted distortion measures are
defined as

Dα(x, x′) =

m∑
l=1

αlDl(Fl, F
′
l ) (10)

where D is the distortion measure, α the weight, x the cluster
set, x′ the category set, and Fl and F ′l lth feature vectors in the
cluster and category sets respectively. The vector of weights
is called feature weighting.

Document-cluster set membership and document-category
set membership matrices are shown in Table I. At the last
row, the corresponding feature vectors are depicted.

TABLE I
THE FEATURE WEIGHTING FOR CLUSTER AND CATEGORY SETS

RESPECTIVELY

Cluster Set Category Set
x1 x2 ... xm x′

1 x′
2 ... x′

m
d1 w11 w12 ... w1m d1 w11 w12 ... w1m

d2 w21 w22 ... w2m d2 w21 w22 ... w2m

: : : ... : : : : ... :
dn wn1 wn2 ... wnm dn wn1 wn2 ... wnm

F1 F2 ... Fm F ′
1 F ′

2 ... F ′
m

Distortion measures should be utilized in a way that within
category distances must be smaller. In the k-means algorithm,
it means that document to cluster centroid distances must be
smaller that is k disjoint clusters π†1, π

†
2, ..., π

†
k are generated in

the manner to minimize the objective function which is given
below:

{π†u}ku=1 = argmin
{πu}ku=1

(

k∑
u=1

∑
x∈πu

Dα(x, cu)) (11)

cu thereby denotes the cluster centroids vector.

IV. EXPERIMENTAL EVALUATION

The experiments are conducted on the Wikipedia XML
Corpus [4], which is composed of hyperlinked Wikipedia
articles. Two category files are also included in the data
set. One contains id document, id category pairs and the
other lists the category names for the defined category ids.
In total, there are 659,388 documents in 72 English portal
categories in the collection. In Table II, link related statistics
(indegree, outdegree, and clustering coefficient) of the data set
are provided:

TABLE II
LINK RELATED STATISTICS OF THE WIKIPEDIA XML CORPUS

min max mean median stdev
indegree 0 74950 20.9016 4 289.0161
outdegree 0 5176 20.9016 12 37.3416

ccoef 0 1 0.2493 0.2 0.1875

Link related statistics say that the indegrees follow a power-
law distribution and the clustering coefficient values have
a tendency to be smaller than 0.5, which means that the
curvature is mainly negative in the inherent document space.

We randomly selected 10 categories to test our approach.
In Table III you find the selected category names along with
the corresponding document counts.

The clustering coefficient values are calculated based on the
global link graph rather than the link graph for the selected
categories because the clustering coefficient values begin to
converge when the node count increases. In fact, you cannot
get clustering coefficient values other than NaN using the
category link graphs as in-category links are quite rare. As
for the text part, each document is considered as a multi-
dimensional vector and bag-of-words approach with tf-idf is
utilized to form final document vectors. In the experimental
scenario, as we deal with high dimensional data, clustering
algorithms that have to face the curse of dimensionality would
not fit the scheme. Thus, the popular k-means algorithm has
been chosen. k-means is a good choice because we use two
feature sets, namely a) curvature values and b) term-document
vectors and there exists an abstract framework for integrating
multiple feature spaces in the k-means algorithm [19].

TABLE III
SELECTED CATEGORIES WITH SIZE

Category Name Size
Bangladesh 393
Colombia 304
Finland 1887

Hong Kong 11056
Morocco 230

Netherlands 1350
New Zealand 2393

Romania 1340
Uganda 232

Venezuela 569
Total 19754

The feature combination is done using a mathematical
function to compute geodesic distances by exploiting both



textual information and the link topology. In our approach,
we calculate the clustering coefficient values using the whole
adjacency matrix of the data set and save these values along
with the belonging document ids. As the clustering coefficient
values are rough estimates of the curvatures, simple heuristics
are applied to them in order to increase their distinctiveness.
Algorithm 1 details the heuristic we use to generate the
curvature values.

Algorithm 1 generateCurvature algorithm.
1: ccoef : clustering coefficient value
2: if ccoef 〉 0.5 then . Curvature is positive?
3: ccoef=ccoef -0.5
4: else
5: ccoef=ccoef+1
6: end if

The clustering coefficient values of the documents in the
collection are mainly negative with a mean of 0.2. This
means that the documents reside in a hyperbolic space. In
the heuristic defined in the generateCurvature algorithm it is
assumed that for negative curvature values which are close
to 0.5 (zero curvature), distortion should be greater than for
values that are far from 0.5. Thus, 1 is added to the negative
curvature values in order to arrange the distortion accordingly.
This is consistent with the graph of the distortion of embedding
the Internet as a function of the curvature of the embedding
space given by [20] in Figure 2. When it comes to positive
curvatures, their ordering is preserved and their effect on the
centroid curvature is weakened by making a subtraction.

Fig. 2. The distortion of embedding the internet in dimension two as a
function of the curvature of the embedding space [20].

After generating the curvature values we need to compute
the average of them in order to represent the curvature of the
centroids in the k-means clustering algorithm. The centroid
curvature is calculated by taking the average of the individual
curvature values belonging to the documents that are classified
around the same cluster centroid. In this computation, we
disregard the NaN values, which are quite rare.

In the experiments, k-means with cosine similarity measure
is compared against the k-means with geodesic similarity
measure. In order to have a fair comparison we fix the
initial cluster assignments. In the cosine case, we run k-means
with no initial cluster assignments since the code randomly

determines the initial centroids. In the geodesic case, we use
the same initial centroids from the cosine case in order to
see the effect precisely. In short, in every run the cosine and
geodesic share the same initial cluster assignments. However,
the initial cluster assignments differ among different runs. We
run the experiments 10 times.

We set the number of clusters parameter k as twice the
number of categories in order to see the effect more clearly.
In the same way, Strehl et al. [12] choose clusters that are
twice the number of categories and explain that this setting
provides the more natural number of clusters as indicated by
preliminary runs and visualization.

The clustering results are evaluated using the metrics rand
index [21] and adjusted rand index (AR) that are pair-counting
based as well as mutual information [22] [12] and normalized
mutual information (NMI), which are information-theoretic
measures. In particular, the k-means clustering results are
evaluated according to the normalized versions of van Dongen,
mutual information and rand index criteria which are stated as
the right measures for the algorithm by Wu et al [23]. In the
computation of these specified clustering metrics we need the
category labels vector and the cluster labels vector as input.
As we set the number of clusters for the k-means algorithm
to twice the number of categories, while category labels vary
between 0 and n, cluster labels have range 0 to 2n. In other
words we end up with a contingency table which has n rows
(categories) and 2*n columns (clusters). The approach to be
taken at this stage to calculate the evaluation metrics for the
clustering is complicated. The difficulty lies in determining the
criterion to select the n clusters out of 2*n. If you ignore this
varying range problem and calculate the metrics accordingly,
the clustering quality suffers. If you take the columns (clusters)
that have the highest intersection with the categories, it is not
fair because in one case the second largest group can be very
close in size to the first one whereas in others the gap can be
quite big.

The intersection among the selected categories (documents
that belong to more than one category) form a small set thus
the effect on the clustering can be ignored.

In the evaluation part, we calculate the precision numbers
in order to measure the overlap between a given clustering
and the ground truth classification. In our case the ground
truth classification is given as Wikipedia categories. We com-
paratively analyze the clustering results for the k-means with
cosine and k-means with geodesic with the real categories.
The precision computations are done based on the methods
provided by [19]. Their work establishes the framework for
integrating multiple feature spaces in the k-means clustering
algorithm. Thus, valid comparisons between single feature
spaces and multiple feature spaces in the k-means case can
be best accomplished using the framework’s defined precision
metrics rather than the traditional clustering metrics for the
k-means namely NMI and AR. In our experiments, we also
calculated NMI and AR values. The results verify that the
order of the NMI and AR values in the cosine and geodesic
cases is in accordance with the order of the defined precision



metric values in both cases for every run.
To meaningfully define precision, we convert the clusterings

into classification using the following simple rule: identify
each cluster with the class that has the largest overlap with
the cluster, and assign every element in that cluster to the
found class. The rule allows multiple clusters to be assigned
to a single class, but never assigns a single cluster to multiple
classes.

Suppose there are c classes {ωi}ci=1 = 1 in the ground
truth classification of n objects. Precision is defined using
the following equations where ai denotes the number of data
objects that are correctly assigned to the class ωi, bi the
documents that are incorrectly assigned to the class ωi, and ci
denotes the documents that are incorrectly rejected from the
class ωi.

pi =
ai

ai + bi
and ri =

ai
ai + ci

, 1 ≤ i ≤ n (12)

The precision is defined per class. In order to capture the
performance averages across classes micro-precision (micro-p)
values are calculated as follows:

micro− p = 1

n

c∑
i=1

ai (13)

The experimental results (micro-precision values) are shown
in Table IV. The first column lists the values belonging
to k-means with cosine, the second column k-means with
geodesic, the third column k-means with a geodesic derivative,
the fourth, min of cosine-geodesic pair, and finally the last
one harmonic mean of cosine-geodesic pair respectively. The
difference between the two geodesic approaches is in the
calculation of the average centroid curvature values. The
former one sums the curvature values without paying attention
to the signs of the curvature. In the latter one the summation
operation takes into account the signs that is the positive
ones are added to the sum whereas the negative values are
subtracted from it.

k-means’ performance function aims at minimizing the
total within-cluster variance by the way of minimizing the
total mean squared distance for each point and the closest
centroid. The closest centroid assignment of a point implies
that the algorithm implicitly assigns every point to exactly one
cluster, imposing a hard membership for points. k-harmonic
means [24], on the other hand, uses the distances to all
centroids in order to assign weights to the points and before
the final convergence phase there’s no assignment to any
particular clusters. Therefore, k-harmonic means utilizes soft
membership and has the capability of moving points to other
cluster centers in the case of high locally dense data points
and centers [25].

Inherently, k-means has sensitivity to initialization and k-
harmonic means is said to be essentially insensitive to initial-
ization due to the above mentioned capability over k-means.
Therefore, it’s a good starting point to investigate the effect of
initialization on the k-means algorithm in pursuing the factors
related to the performance of geodesic over cosine in the

experiments. Both cosine and geodesic approaches were run
on a k-harmonic means implementation, but no distinguishing
difference was observed. Then the effect of initialization can
be disregarded in comparing the effectiveness of cosine and
geodesic similarity measures in k-means clustering applica-
tions.

k-means’ performance function given in equation 11 can be
rewritten as:

{π†u}ku=1 =

N∑
i=1

min(|xi − cu|2 |u = 1, ..., k) (14)

This new representation is the result of a unified view of
the k-means and k-harmonic means’ performance functions
[24]. The part that comes right after the min, represents the
distance function. The min assigns the documents to clusters
according to minimum distances. In the k-harmonic case, the
harmonic averages (HA) of the distances from each data point
to the centers are computed as components to the relative
performance function.

Taking inspiration from this rewritten form of the perfor-
mance function, the min and HA can be evaluated as operators
that are applied to the succeeding distance functions. In the
context of this paper, these operators can be moved inside and
be applied directly to the distance function part as well. As we
have cosine and geodesic distances in the experimental setting,
by calculating the minimum and harmonic averages of the two
distances, an alternate distance form can be generated to be
useful. In Table IV, the calculations for both of these variations
are listed as the fourth and fifth columns respectively.

In order to compare the effects of the different distance
measures, we perform the nonparametric Friedman’s test. The
test is conducted on three different triples: ”cosine-geodesic-
geodesic derivative”, ”cosine-geodesic-min”, and ”cosine-
geodesic-harmonic”. The rows are the different runs. The
resulting p values of the Friedman’s test for the triples are
as follows: 0.0608, 0.0450, and 0.0273.

The Friedman’s test evaluates the hypothesis that the column
effects are all the same against the alternative that they are
not all the same. The first result says that the three distance
measures are not the same within the 90 % confidence interval.
The other two prove that these variations introduce statistically
important effects to the already computed values within the 95
% confidence interval. In other words, the methods affect the
clustering effectiveness.

When we have a look at the micro-p values given in Table
IV, we see that the worst performance for the geodesic cases
is in the last run. In order to find out the reason behind that,
we expanded Maclaurin series approximation in the equation
3 by one more term ending up with the equation 7. We used
Newton’s solver to numerically estimate the root of the quintic
equation given in equation 9. The clustering results we get
show that the quintic geodesic equation improves the results in
favor of some specific categories whereas it works against the
remaining ones resulting in almost the same micro-p value we
have. When we analyze the contingency tables for cosine and



geodesic in every run, we also realize that the geodesic runs’
improvements are the results of great performances on those
specific categories. Thus, the geodesic approach’s effectiveness
must have some relation with some category-specific attribute.
However, we have not clarified it yet.

According to the mean and standard deviation of the differ-
ent distance measurements provided in Table IV, the geodesic
better expresses the inherent clustering structure of the data
(due to higher mean) and at the same time it is more robust
as it has less variance.

V. CONCLUSION

In this work, we propose a novel distance measure for
clustering hypertext documents, which is based on both textual
information and the link topology of the hypertext document
collection. It is useful to highlight the basic components of
our approach:

• The basic assumption is that clustering coefficient val-
ues that indicate the local connectivity structure of the
documents can be used as curvatures. This assumption
is based on the fact that clustering coefficients are rough
estimates of curvatures [3]. They are computed on the
global link graph of the data set.

• The notion of geodesic distances in curved spaces is used
to define a mathematical function to do feature combina-
tion. For this purpose the geodesic distance calculation
scheme on the 0-sphere is utilized.

• Text features are combined with the generated curvature
values in order to improve the clustering results in the
k-means case. This means integrating multiple feature
spaces in the k-means algorithm. One needs a framework
that covers the comparative analysis of multiple feature
spaces over single feature spaces in the k-means algo-
rithm to test the effectiveness of the candidate functions
for feature combination. The abstract framework provided
for the feature weighting in the k-means algorithm [19]
defines the context and the evaluation methodology for
the work.

The experiments are conducted on the Wikipedia XML
Corpus English subset [4]. The evaluation metrics are based
on the ground truth classification provided as the Wikipedia
categorical information. The results show that the curvature
values calculated based on the link graph of the data set can
be used to fine-tune the similarity values so that the objective
function for the clustering can be minimized. Furthermore, the
k-means algorithm has proven to be suitable for the proposed
geodesic method because of the centroid concept. Using
centroid curvature value rather than the individual document
clustering coefficient values to fine-tune the cosine is more
reasonable as centroid curvature value is a better indicator
of locality. Thus, the geodesic approach can be transferred
to contexts where there is a multiple feature space, in which
one feature can represent curvature, and there is a cumulative
calculation potential for this feature.

A. Future Work

The experimental results show that in some runs the
geodesic approaches perform better than cosine whereas in
some others they are slightly worse. The next task to be done
is to discover the factors related to the success or failure of
the geodesic method.

In pursuing the factors related to the performance of
geodesic over cosine in the experiments, the effect of initial-
ization on the k-means algorithm has been investigated. As
previously denoted, cosine and geodesic approaches’ outcomes
do not have any relationship with the choice of initialization
in the k-means algorithm. K-harmonic means implementations
were run to analyze the initialization sensitivity and no impor-
tant improvements were observed in both similarity measures
and one’s performance in comparison to the other’s.

The results motivate alternative computation schemes for
geodesic distances. We use geodesic distance computation
formula for 0-sphere (circle) in this work. Alternatively, great-
circle distances (1-sphere) can be utilized as geodesics. On the
other hand; rather than assuming that the space is spherical,
taking into consideration the fact that the clustering coefficient
average for the data collection coincides with a negative curva-
ture value, the underlying space can be assumed as hyperbolic.
Hyperbolic distance calculation schemes in accordance with
the given parameters can be devised.

We believe that the heuristics that are applied to the
clustering coefficient values in order to generate curvatures
can be systematically studied and improved. Furthermore,
other linked data sets can be used to further evaluate the
effectiveness of the geodesic distance measure.
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TABLE IV
THE MICRO-P VALUES WITH THE CLUSTERINGS WITH K-MEANS COSINE, GEODESIC, GEODESIC DERIVATIVE, FIRST TWOS’ MIN AND HARMONIC MEANS

RESPECTIVELY. THE CORRESPONDING MEAN AND STANDARD DEVIATION VALUES ARE ADDED AS THE LAST TWO ROWS.

run ] cosine geodesic geodesic-derivative min harmonic

1 0,727448 0,737775 0,743191 0,732712 0,737268
2 0,72355 0,733117 0,738585 0,709122 0,729473
3 0,718285 0,724208 0,724866 0,721120 0,721930
4 0,738585 0,74552 0,740812 0,746178 0,746229
5 0,662752 0,676774 0,684823 0,670902 0,673534
6 0,700618 0,706135 0,696973 0,707958 0,713779
7 0,702288 0,705528 0,703756 0,701023 0,698289
8 0,678394 0,683912 0,685633 0,679660 0,684722
9 0,728612 0,728663 0,720462 0,730687 0,728106
10 0,724309 0,708565 0,690088 0,715298 0,706439

mean 0,7105 0,7150 0,7129 0,7115 0,7140

stdv 0,0243 0,0228 0,0234 0,0234 0,0233


