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Abstract
Visual data mining techniquesveaprosen to be of high alue in &ploratory data analysis and thalso hae a
high potential for mining laye databases. In this article, we describe amntliate a n@ visualization-based ap-
proach to mining laye databases. The basic idea of our visual data mining techniques is to represepntdasanan
items as possible on the screen at the same time by mapping eaddwata & pigl of the screen and arranging
the piels adequatelyhe major goal of this article is teaduate our visual data mining techniques and to compare
them to other well-knan visualization techniques for multidimensional data: the parallel coordinate and stick fig-
ure visualization techniquesoFthe &aluation of visual data mining techniques, in the first place the perception
of properties of the data counts, and only in the second place the CPU time and the number of secondary storage
accesses are important. In addition to testing the visualization techniques using real datalopedia testing
ernvironment for database visualizations similar to the benchmark approach used for comparing the performance of
database systems. The testingmmment allovs the generation of test data sets with predefined data characteristics

which are important for comparing the perceptual abilities of visual data mining techniques.
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1. Introduction

Having the right information at the right time is crucial for making the right decisions. Because astttech-
nological progress, the amount of information which may be of interest for making decisions inczeafest.v
One reason for thever increasing stream of data is the automation ofities in all areas, includingusiness,
engineering, science, andvgonment. ©day even simple transactions, such as paying by credit card or using the
telephone, are typically recorded by using computegst 3eries in pisics, chemistryand medicine generate
large amounts of data which are collected automatically via sensors and monitoring syséentsg&vamounts
of data are collected by satellite obsgion systems which aregected to generate one terabyte of dataye
day in the near future. But finding thalwable information hidden in them, isdilsearching a pin in a haystack.
Very laige amounts of data are an important resourgenbst of the time it isery hard to find the rebant infor-

mation.

‘Data Mining’ may be defined as the (non-trivial) process of searching and analyzing data in order to find implicit
but potentially useful information [1]. Let D ={d..., d} be the data set to be analyzed. Then, the data mining process

may be described as the process of finding



e asubset Dbf D and
» hypotheses 4 (D’, C) about D’

that a uset) considers useful in an application cont€xt

Note that D’ may not only have fewer data elements than D, but it may also have a lower dimensionality (m’).
Since in databases the data is often partitioned into relations or object classes, D may be considered as a union of re-
lations R, ...,R (D = ﬁ R ), each having its own dimensionality {m., m,). The hypotheses expressing inter-
esting aspects of the ollgtfa may deal with the whole database or with a single relation (D’ =IRg; Bley may
deal with real subsets of the databd3el{l D with |D’| «|D| and|D’| sufficiently large) or with single exceptional
data items, so-called hot spof3' (O D and|D’| = 1 or sufficiently small when compared to DAmong others,

hypotheses may be
+ properties that hold for all or mostle D’, (D' O D),

+ classifications of D’ into classes With different properties;P
[P(epzR(e) U e UCUeICGOI#]],

» functional dependencies F or relationships R between two or more dimensions
[ dil: F(qz, ...,d”) or R(ql’ ...,d“) , I < m]

The definition of data mining can be further formalized, e.g. by definingathesis description language, a
context description formalism and so on. The users and their notion of ‘usefulnegsienaan hardly be formal-
ized since ‘usefulness’ not only depends on the changingl&dge of the user and the application domain it
also includes some notion of credy and users may not be able to define their usefulness criteria. On the other
hand, if a data mining tool helps the user to find useful D’ and to findeaify kypotheses, then it may not be
important to hae the lypothesis, the comteéand so on formally specified. All these aspects are present in the us-

ers’ minds who will also be able taress and communicate their ideasands other humans.

Our definition of data mining is a quite broad definition which does not only includeotkedane in the area
of data mining and knaledge discaery, but also relates to a wide range of other research areas including multi-
variate statistics (principal component analysis, cluster analysis, and multidimensional scaling [2]), database inter-
faces (cooperate database intex€es [3], interices for imprecise querying [4], intelligent datawsing [5]), and
information retrigal (approximate matching algorithms [6] [7]). Thenw done in data mining focuses on the
semi-automaticxaraction of knavledge. In all mentioned areas, importantathes hae been madever the last
years. Mag novel data mining techniquesYebeen deeloped and seral adanced data mining systemsvea
been implemented [1] [8]. Neadays, havever, only a limited number of approachesni for very lage amounts
of data (millions of data items) and little interest has beeengio noisy data [8]. Examples for techniques that
work for very lage data sets are DHP [9], Apriori [10], and DBLearn [11], atahples for techniques that also
work for noisy data are DBLearn [11] and CLARANS [12].

An interesting obseation is that all mentioned techniquesriwfully automatically ot need to hae a-priori de-

fined tasks. The tasks are a specific typeypbthesis and the goal of the algorithms is to find quanttatiles



that male the lypotheses more specific and allthe user to confirm or reject thenask-oriented data mining is
important lut it is also important to delop techniques for data-dein typotheses generationoirthis purpose, it
is necessary to include the human in the data mining process and combineititiéyflereatvity, and general
knowledge of the human with the enormous storage capacity and the computateeabptodays computers.
In particular the humars unmatched abilities of perception enable the users to analyze x@vgies within a
short time, to recognize important information, and toerdécisions. The human perceptual system processes dif-
ferent types of data in @y flexible way, automatically recognizing unusual properties while at the same time ig-
noring well-knavn properties. The human handlegue descriptions and imprecise Wiexge easier and better
than todays computer systems and, using generaiWkedge, easily dras comple conclusions.

Our approach to data mining therefore aims agnattng the human in the data mining process and applying its
abilities to the lage data setsvailable in todays computer systemsoFthis purpose, techniques which yice a
good waerview of the data and use the possibilities of visual representation for displagegtaounts of multi-
dimensional data are especially important. The basic idea of muvigeal data mining techniques for multidi-
mensional data is to represent as yndatta items as possible on the display at the same time by mapping each data
value to one pial of the screen and arranging thegiixadequatelyThe color of the pigl corresponds to the data
value or the distance between the daae and a gen query glue. Diferent visual data mining techniques are
available for the diierent stages of the data mining process. In using our visual data mining techniques, the possi-
bility to directly interact with the visualizations is important. In the procesymdtheses generation, the user is
guided by the visual feedback of the visualizations and quickly learns more about the properties of the data in the
database.

Since the reader is not assumed todmiliar with visual data mining techniques, in secowe gve a brief
general surgy of visualization techniques for multidimensional nugtiate data. \& classify the xasting tech-
nigues into fie groups: pigl-oriented, geometric, icon-based, hierarchical, and graph-based techniques. In
section3, we preide a detailedwluation and comparison ofi@al visual data mining techniques includinggbix
oriented, geometric and icon-based techniques. In addition to testing the techniques using real data
(cf. subsectior8.1), we deeloped a testing @ronment for database visualizations similar to the benchmark ap-
proach used for comparing the performance of databases (cf. subsections 3.2 andtB8wd&iuation of visual
data mining techniques, the perception of properties and correlations of the data is more important than the CPU
times or the number of secondary storage accesses. Still, the inigractihe system is essential and therefore,
in section 4, we analyze the time performance of our algorithms. SBctiammarizes our evk and points out
some of the open problems for futurenk:

For our considerations, we assume a simple structure of the database as we may find it in the relational model.
This is adequate for most of the considered applications, becaydage amounts of data are typically managed
with the aid of relational systems. Our visual data mining techniquesylp can also be used for visually mining

large amounts of data stored in object-oriented or other types of databases.



2. Techniquesfor Visualizing Large Amounts of Multidimensional Data

Visualization of data which ke some inherent wv or three-dimensional semantics has been degre lsefore
computers were used to create visualizations. In the welltkihooks [13] [14], Edard R. Tfte provides mag
examples of visualization techniques thatdndeen used for mgiyears. Since computers are used to create visu-
alizations, may novel visualization techniques Y& been deeloped andasting techniques & been etended
to work for laiger data sets and nmakhe displays interagg. For most of the data stored in databaseweler,
there is no standard mapping into the Cartesian coordinate system, since the data has no ioherethtée-
dimensional semantics. In general, relational databases can be seen as multidimensional data sets witieshe attrib
of the database corresponding to the dimensions. Therevaralseell-knavn techniques for visualizing multidi-
mensional data sets: scatterplot matrices and coplots [15] [16], prosection matrices [17], parallel coordinates [18]
[19], projection pursuit [20], and other geometric projection techniques (gpgrbdox [21] and yperslice [22]),
icon-based techniques (e.g., [23] [24]), hierarchical techniques (e.g., [25] [26] [27]), graph-based techniques (e.qg.,
[28]129] [30]), dynamic techniques (e.g31] [32] [33]), pixel-oriented techniques (e.§34] [35] [36]), and com-
binations hereof (e.g., [37] [38]). The research also resulted inxjdtaation and analysis systems which imple-
ment some of the mentioned techniques. Examples include statistical data analysis packagesdusiiradiS
[39], XGobi [40], and Data Desk [41], visualization oriented systems such &s B2}/ XmdvTool [42], and IBM5
Parallel Msual Exploreras well as database oriented systems suchea$iZ [27], the Information Vsualization
and Exploration Evironment (IVEE)[44], and th¥isDB system [45]. In the follwing, we briefly classify and

describe some important techniques which are suitable for visually minjegdatabases.

2.1 Pixel-oriented Techniques

The basic idea of pet-oriented techniques is to map each dataesto a colored pét and present the datalv
ues belonging to one atttite in separate windes (cf. Figurel). Since in general our techniques use only one pix-
el per data alue, the techniques allous to visualize the Igest amount of data, which is possible on current dis-
plays(up to about 1,000,000 datalues) If each dataalue is represented by one gixthe main question is o
to arrange the peds on the screen. Our pixoriented techniques usefdifent arrangements for thfent purposes.
If a user vants to visualize a lge data set, the user may use a query-independent visualization technique which
sorts the data according to some atiiglfs) and uses a screen-filling pattern to arrange the alatswn the dis-
play. The query-independent visualization techniques are especially useful for data with a natural ordering accord-
ing to one attribte (e.g., time series data). Wiver, if there is no natural ordering of the data and the main goal is
an interactie exploration of the database, the user will be more interested in feedback to soménaihéscase,
the user may turn to the query-dependent visualization techniques which visualizevireceeltd the data items
with respect to a querynstead of directly mapping the datlues to colarthe query-dependent visualization
techniques calculate the distances between data and qlieeg,\combine the distances for each data item into an
overall distance, and visualize the distances for the attty$band thewerall distance sorted according to thvemn
all distance. The arrangement of the data items centers the meahtelata items in the middle of the wimngo

and less relant data items are arranged in a spiral-shape to the outside of thevwindo



All pix el-oriented techniques partition the screen into multiple wirsd®or data sets with m attribes (dimen-
sions), the screen is partitioned into m wiwde— one for each of the attikes. In case of the query-dependent
techniques, an additional (m+1)th windés provided for the werall distance. Inside the windgs, the dataalues
are arranged according to theegi oserall sorting which may be data-den for the query-independent techniques
or query-drven for the query-dependent techniques. Correlations, functional dependencies, and other interesting

relationships between attttes may be detected by relating correspondigpms in the multiple windes.

Query-Independent Pixel-oriented Techniques

Simple query-independent arrangements are to arrange the data from left to right in a lineasyilmedr top-
down in a column-by-columreshion. If these arrangements are donelpise, in general, the resulting visualiza-
tions do not preide useful results. More useful are techniques whichigeda better clustering of closely related
data items such as space-filling ®s\e.g., the well-knvan cunes by Peano & Hilbert [46] [47] and Morton [48]).
For data mining ¥en more important are techniques thatvjate nice clustering properties as well as an arrange-
ment which is semantically meaningful. Axeenple for a technique which has these properties is the rexpegi
tern technique. The recwsipattern is based on a generic reserscheme which ales the user to influence the

arrangement of data items.

It is based on a simple back and forth arrangement: First, a certain number of elements is arranged from left to
right, then belw backwards from right to left, then agq forward from left to right, and so on. The same basic
arrangement is done on all recursiovels with the only dierence that the basic elements which are arranged on
level i are the patterns resulting froméd(i-1)-arrangements. Let; be the number of elements arranged in the left-
right direction on recursionvel i andh; be the number of wes on recursion ieeli. On recursion leel i (i = 1),
the algorithm dras w; level(i-1)-patternghy; times alternately to the right and to the left. The pattern on recursion
level i consists ofw; x h; level(i-1)-patterns, and the maximum number ogggxhat can be presented on recursion
level k is gven by|‘|ik: W, xh; . An example for a recurge pattern visualization of a database containing the 100
stocks of the AZ index (Frankfurt Stock Indg from 20 years of stock price data (altogether 532,900 dhias)

can be found in [36].

Query-Dependent Pixel-oriented Techniques

The idea of the query-dependent visualization techniques is to visualize the data in tkteofardpecific user
guery to gve the users feedback on their queries and direct their search. Instead of directly mappiten\attrés
to colors, the distances of attiile \values to the query are mapped to coloesdé@scribe the idea of the query-de-
pendent techniques, we vighe relations of a relational database as sets of tugles, (..., &) with &, &, ..., &
denoting the attribute values of a data item. Simple queries against the database can be described as regions in the
k-dimensional space defined by the k attributes of the relation. If exactly one query value is specified for each at-
tribute, the query corresponds to a point in k-dimensional space; if a query range is specified for each attribute, the
guery corresponds to a region in k-dimensional space. The data items which are within the query region form the

result of the query. In most cases, the number of results cannot be determined a priori; the resulting data set may



be quite large, or it may even be empty. In both cases, it is difficult for the user to understand the result and modify
the query accordingly. To give the user more feedback on the query, our visual data mining techniques do not only
present the data items which are within the query region, but also those which are ‘close’ to the query region and
only approximately fulfill the queryzor determining the approximate results, distances between the data and query
values are calculated. The distance functions are data type and application dependemteFc types such as

integer orreal and other metric types suchdase, the distance of tavvalues is easily determined by their numerical
difference. Br other types such agings, multiple distance functions such as thédegraphical diference, char-
acterwise diference, substring ddrence, oreen some kind of phonetic ééfence may be useful. The distance
calculation yields distance tuplés, d,, ..., d,) which denote the distances of the data to the query. We extend the
distance tuples by a distance valyg ddenoting the overall distance of a data item to the query. The valpg of d

is zero if the data item is within the query region; otherwjsemtovides the distance of the data item to the query
region. In combining the distance valueg (4, ..., d,) into the overall distance valug,g user-provided weighting

factors (w, w,, ..., W,) are used to weight the distance values according to their importance. The distance tuples
(dq, dy, ..., d, disq) are sorted according to the overall distange @henthe distance tuples are mapped to color

In this step, thealue ranges for each of the attriés and for thewerall distance are mapped to a colorscale which

has been specifically designed for our visual data mining techniques. Note that the human visual system has a non
linear response to luminance and spectral content. Incorrect use of color caxidtidg eelations betweenravi-

ables, and introduce adiits. It is therefore important to use a colorscale which is perceptually equally spaced [49].
Our colorscale uses yelloto depict the distance ‘zero’ and a decreasing lightness to depict increasing distance
values. The colors for approximate results range from greenbtue and red to almost blaclorFletails about

our color mapping, the reader is referred to [50].

Since the focus of the query-dependent techniques is on thanedeof the data items with respect to the query
different arrangements of the pig are appropriate. In @goping the system, wegerimented with sesral ar-
rangements such as the left-right or toprd@rrangements. 8found that for visualizing the results for a database
query it seems to be most natural to present the data items with higheaheceléo the query in the center of the
display Our first approach described in [35] [514svto arrange the data items wittvér releances in a rectan-
gular spiral shape around the centdre generalized spiral andemxtechniques presented in this paper are a gen-
eralization of those techniques. Instead of arranging the data in a rectangular spiral shape ihetmged to
a generic spiral form which mayvea Sna&-, Peano-Hilbert-, or Morton-l&local pattern (cf. Figur®) of a cer-
tain dgree (1.2, 4, 8, 16). The adantage of the generalized spiral andsatechniques is that thegiee of clus-
tering is higherln case of the generalized spiral technique, the one hundred percent correct answers are presented
in the middle of the winde and the approximate answers sorted according to thaialbdistance (or relance)
in a generalized spiral form around thigiom. As for the query-independent visualization techniques, a separate
visualization for each of the selection predicates (atie®) is generated (dfigurel). An additional windw
shaws the eerall distances. In all of the winds, we place the péts for each data item at the same position as

the overall distance for the data item in theewall distance winde is located. By relating correspondingjieans



in the diferent windavs, the user is able to pereeidata characteristics such as multidimensional clusters or cor-
relations. Additionallythe separate wing for each of the selection predicates/mte important feedback to the
user; for @ample, on the restristeness of each of the selection predicates and on skuget®nal data items.
Examples of spiral visualizations are yided in section 3. The as technique impkes the spiral technique by
including some feedback on the direction of the distance into the visualization. The basic idea is to @asgign tw
tributes to the aes and to arrange the data items according to the direction of the distance; for are aggakve
distances are arranged to the left, pesitines to the right and for the other atttébngative distances are ar-
ranged to the bottom, posii ones to the top (cf. FiguBd. As in case of the spiral, tifent local patterns (Snek
Peano-Hilbert, Morton) of di¢érent dgree (1, 24, 8, 16) may be used. The partitioning of the data into four sub-
sets proides additional information on the position of data items with respect to theit@srdssigned to theesc
Since the quadrants which correspond to the four subsets are not equally filled, the number of data items which may
be visualized is slightly leer. This, havever, is the price for the highexpressveness of the resulting visualiza-
tions. An ékample of an ags visualization is praded in subsectioB.1.

Note that all ariants Enake, Peano-Hilbert, Morton) reduce to a simple spiral for a degree of one. A degree of
one means that the local pattern consists of only=1kbixel, and in this case tlugiginal spiral and aes tech-
niques [35] [51] are identical to the generalized techniquegtailed comparison of the possible variants (Snake-
Spiral, Peano-Hilbert-Spiral, Morton-Spiral, Snake-Axes, Peano-Hilbert-Axes, Morton-Axes) with different de-
grees (12,4, 8, 16) is provided iff52]. The formulas for calculating the distances and their combination into the
overall distance as well as all aspects related to the handling of cogugliees (conditions with nested ANDs and
ORs, multiple table and nested queries) are presented in [35]. The focus of this paper is on the data mining capa-

bilities of the \arious visualization techniques.

2.2 Geometric Projection Techniques

Geometric projection techniques aim at finding ‘interesting’ projections of multidimensional data sets. The class
of geometric projection techniques includes techniquespmbratory statistics such as principal component anal-
ysis, factor analysis and multidimensional scaling, ynainwhich are subsumed under the term ‘projection pursuit’
[20] [53]. Since there is an infinite number of possibilities to project high-dimensional data onto thisgiay
dimensions, ‘projection pursuit’ systems such as the grand tour system [37] aim at automatically finding the inter-
esting projections or at least helping the user to find them.

Another geometric projection technique is the parallel coordinate visualization technique [18] [19]. The parallel
coordinate technique maps the k-dimensional space onto ¢hdigplay dimensions by using k equidistargsax
which are parallel to one of the displayeaxThe a@s correspond to the dimensions and are linearly scaled from
the minimum to the maximumalue of the corresponding dimension. Each data item is presented as a polygonal
line, intersecting each of theexxat that point which corresponds to thkig of the considered dimension (cf. Fig-
ure 1a). Although the principle idea of the parallel coordinate visualization technique is quite simpl&yétislpo
in revealing a wide range of data characteristics such fgeatit data distriltions and functional dependencies.

However, since the polygonal lines mayeslap, the number of the data items that can be visualized on the screen



at the same time is limited to about 1,000 data itemBigare4b, an @ample visualization of three-dimensional
data is presented. Clearly visible in the visualization is that the data consistsraf skeisters which are restricted
to quite limited ranges for the second dimensionrbay hae much lager ranges for the other dimensions. The
parallel coordinate technique is used in the comparison of subsg@iorhe reader is therefore referred to sub-

section 3.3 for more details and furthgamples.

2.3 lcon-based Techniques

Another class of techniques for visual data mining are the icon-based techniques (or iconic display techniques).
The idea is to map each multidimensional data item to an icon. First approaches of iconic displays are the well-
known Chernofffaces [13] [54]. In the Cherridface visualization, tardimensions are mapped to thetdisplay
dimensions. The remaining dimensions are mapped to the propertiesoefiadn — the shape of nose, mouth,
eyes, and the shape of trecé itself. The Chernbface visualization capitalizes on the human seitsitio faces
and fcial features. The number of data items that can be visualized using the dflemtdchnique, gever, is
quite limited.

An iconic display technique, which alls a visualization of Igier amounts of data and is therefore more ade-
quate for data mining, is the stick figure technique [23] [55] [56]. As indicated by the name, the icon is some type
of stick figure. Agin, two dimensions are mapped to the display dimensions and the remaining dimensions are
mapped to the angles and/or limb lengths of the stick figure icoRiefre5a). If the data items are relaly
dense with respect to the display dimensions, the resulting visualization presemnésgatterns thatary accord-
ing to the characteristics of the data and are therefore detectable by puegtterdeption. Dférent stick figure
icons with ariable dimensionality may be used (€igure5b). Figure6 shavs a stick figure visualization of fiv
dimensional census data of 1980 US census. In addition to income and age, titesatidbupation, education
level, marital status, and seare visualized by the stick figures. Interesting is the clear shifkinréeover the
screen which indicates the functional depengesfche attrilutes from income and age. Momeaenples of the
stick figure visualizations are prided in the comparison of subsection 3.3. Note that in both, the stick figure and
the Cherndfface technique, the number of dimensions that can be visualized is limited.

Many other ideas for iconic displaysyeabeen deesloped in recent years. An approach whichvedlthe visual-
ization of an arbitrary number of dimensions is the shape-coding approach [24]. The icon used in the shape coding
approach maps each dimension to a small array efg@xd arranges the pbarrays of each data item into a square
or rectangle. The pets corresponding to each of the dimensions are mapped/tsagie or color according to the
data alue of the dimension. The small squares or rectangles corresponding to the data items are then arranged suc-

cessvely in a line-by-line &shion.

2.4 Hierarchical and Graph-based Techniques

In addition to the geometric projections and iconic displays, there arentwe classes of visualization tech-
niques - hierarchical and graph-based techniqueli:RiWown representates of hierarchical techniques are the n-

Vision technique (also kmo as ‘worlds within worlds’) [57], the dimensional stacking [25], and treemaps [27].



The hierarchical techniques sutide the k-dimensional space and present the subspaces in a hieraashical. f

The dimensional stacking technique, feample, subdiides the k-dimensional space into 2D-subspacés. the
exception of treemap, the hierarchical techniques mainly focus on visualizingariaté functions and are there-

fore not particularly interesting for data mining. The basic idea of the graph-based techniquete@itelyef

present a lgje graph using specific layout algorithms, query languages, and abstraction techniques. Examples of
graph-based techniques are'H88], Margritte [29], and SeeNet [30].

3. Evaluation and Comparison of Visual Data Mining Techniques

A central goal of this article is tov@luate and compare the techniques which may be used for visualigiag lar
databases. Anvaluation of visualizations is dérent from galuating the time performance of a system. In princi-
ple, measuring the time performance of a system isvebhattasy compared to measuring tkpressiveness of
visualizations, i.e. the perceptibility of data characteristics. The reason isahstteng the perception necessarily
involves humans, and therefore the results do not only depend on the potential of the visual data mining technique
but also on the human performing the analysis.

Before presenting ouwaluations, in the follwing we briefly introduce he data characteristics such as corre-
lations, functional dependencies, and clusters may be identified in our visualizations generated by the generalized
spiral and ags techniques. The folldng description may be used as a guideline for disgong data characteris-
tics by interpreting the visualizations generated byMis®B system. Note, that mgrof the data mining tech-
nigues we deeloped in vorking with theVisDB system are interagg in nature and are thereforefidiflt to de-
scribe in written form. Neertheless, in the folleing we try to present the basic ideas.

Properties that hold for all or most of the data can be deduced fromettadl brightness and color distution
of the visualizations. The size of the yellportion of the visualization indicates the number of data items fulfilling
the query predicate for the corresponding aiteabThe brightness of the visualization of some aitgilindicates
the dgree of fulfilling the corresponding query predicate, and Heeatl color distrilition shavs the distrilition
of distance alues for the corresponding attrib. Interesting are especially sharp borders between colors, which
indicate discontinuities in thealue range of an attuibe.

Usually the visualizations of the attifes are not independent. Using our visual data mining techniques, corre-
lations and functional dependencies between atgghmay be identified by the similarity of their visualizations.
The more the visualizations of tvattributes are similatthe stronger is the correlation or functionapdndeng
An example is proided in Figure/ (Footnote 1). From the similarity of the visualization wingo it becomes
clear that there is a strong correlation between the @gsbMnAngle and RightAngle. Slightly less similar and
therefore less correlated are MinAngle and MidAngle, ateth @veakr is the correlation between MinAngle and
MaxAngle. A bit problematic are visualizations that do notasshoy structure. The human perceptual system may
consider such visualizations as being similar although thedspof the visualizations do not correspond to each
other and no correlation between the atiiéls &ists. In eperimenting with @rious data sets, we found that the
problem of misleading similarity of visualizations only occurs in visualizations without structure. In cases where

existing structure in the data is nowvealed by the visualization, the structure can usually be made visible by
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changing the weightingttors of some attriltes. Changing the weightingdtors maks it easier to perces sim-
ilarities in the visualizations and to determine the corresponding correlations and functional dependencies
(cf. Figure8b).

Another important group of interesting data characteristics are clusters of data items with similar properties. In
our visualizations, clusters usually appear as rectanggjiange(possibly partial rectangles) which mayédif-
ferent colors for dierent attrilutes. Clusters may @ a laver dimensionality than the whole data set. Therefore,
the clustering may appeanly in the visualizations of certain atwifes. Figure8 shavs an @ample of fourdimen-
sional clusters in six-dimensional data.

Note that the visualizations generated by the generalized spiralesiteakniques in general depend on the cho-
sen query rgion. If the data shall be visualized in a query-independagttive origin of multidimensional space
has to be used as a quergioa. In this case, only the actual dagdues are visualized. Changing the quegiae
has a major impact on the resulting visualizatiowns.ekample, if the query gon is maed avay from a cluster
the cluster becomes less visible in the visualization (cf. Figumy interactvely changing the querygen, dif-
ferent clusters can be made visible. A sgyatior varying the query igion which has pneen useful in ourxgeri-
ments is to start with the full range [mmax] for an attribte and succesaly restrict the range until the visual-
izations reeal some interesting properties. In some cases,whesaof this technique — starting at the minimum
value for some attrilte and gtending the range to the maximum (or viezsa) — is more appropriate. Another
possibility is to use a range with a constatérsion for some attritte and mee it between minimum and maxi-
mum \alue of the attribte. This technique is especially helpful for finding ta&ig range of an atttiite, which
corresponds to an already digeced cluster in some other dimensions - if such a raxigese

In the remaining portion of this section, wedalktwofold approach wards @aluating the perception of visual data
mining techniques. The first, more gentional approach is to demonstrate the potential of visualization techniques
by using a real application (cf. subsect®h). The second, more general approach is a steypde a more applica-
tion-independentwaluation of visualization techniques. By using test data sets which are generated according to
userprovided specifications (cf. subsectidr), it becomes possible to perform controlled testsvimuating the

strengths and weaknesses of visualization techniques.

3.1 Real Data

TheVisDB system has pxen useful for gploration tasks in seral real databases including agiadatabase of
geographical data, a g ewironmental database, and agamNASA earth obsemtion database. Th&sDB sys-
tem has also been used in our molecular biology project for finding possible dockang ey identifying sets of
surface points with distinct characteristics, and we will use #asmple to gemplify the usefulness of the system.

In our stratgy for finding possible docking gens, one important step is to partition the moleculaased ac-
cording to geometric propertiesoiRhis purpose, we use the properties of the triangulation of the molecular sur-
face, e.g. minimum and maximum angle, minimum and maximum side length, right angle and so on. In partition-
ing the molecules into gions, it is dificult to find the right combination ofilue ranges that leads to a meaningful

partitioning of the molecule. TREsDB system has been successfully used for determining intereatirgnang-
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es and combinations of parameters. VigbB system allavs the interactie variation of the parameters and pro-
vides feedback on the resulting data in tiggae. In Figure7, we proide two snapshots from a session with the
VisDB system. The snapshot st®eleven parameters (X_triangle, Y_triangle, Z_triangle, Migle, MidAngle,
MaxAngle, RightAngle, Sugce, MinSide, MidSide, MaxSide) and theerall result generated from the sagé
data of the molecule complésubtilisin carlsbey with eglin’. Since dataxploration is inherently interaot, the
provided snapshots reflect the usefulness oMis®B system only to aery limited etent. In the folleving, we
briefly describe some of the interesting aspects that we learned from the visualization.

By the diferent colors dominating the tBfent portions of the visualization, it can be easily seen that each of the
selection predicates has a distinct impact onieeadl result. The visualization of MaxAngle, fotample, is dom-
inated by dar&r colors, which means that in general the distances to the specified range for MaxAnrf/&E3{80
are quite high. The visualizations of Y_triangle and Z_triangle are much byighiieh means that the specified
guery ranges for these atuiies are less restried. Interesting is the partitioning which results in the case of the
axes technique (Swuate and MaxSide are assigned to thesaxor example, the data items whichveahigh dis-
tances (dark colors) for MinSide, MidSide, and MaxSide cluster in the bottom left quadrant, which means that their
Surface and MaxSide are smaller than the chosen query ranges. Also easily visible is the correlation between the
distances for MinSide, MidSide, and MaxSide, which corresponds to the Pythagorean trzdarehr: ¢%) . Al-
though the quantitaté relationship between MinSide, MidSide, and MaxSide is not deductible from the visualiza-
tion, the similarity of the visualizations indicates that there is some relationship. More interesiavgytare data-
dependent correlations which may not be predicted a priorixAmjgle is the correlation between the data items
that fulfill all query ranges, resulting in the y@lloegion in the middle of the visualization. Theyien in the vi-
sualization corresponds to sare rgions of the molecule, which consist of triangles with similar properties, i.e. a
certain combination ofalue ranges for the parameters.

If the same triangles are visualized in the 3D-representation of the molecule, the triangles form a double-horn
region. Other interesting gions found in the molecular biology application includeesal types of domes, ar-
cades, cees, and tripods (for details see [51]). The 3D-representation of molecuteyg iportant (e.g., for visu-
alizing the final result), W its usefulness forxgloring more than Slimensions (3 dimensions of the coordinate
system plus one or madditional dimensions denoted by color) is quite restricted. In contrast, our visual data min-
ing techniques are able to present a virtually arbitrary number of parametersigalio easy dise@ry of correla-
tions between them angading the possibly confusing 3D-representation which may occur in casgehiate-
cules due to the higtverlap of suréce points.

Note that for determining the properties that lead to interestgign® of the molecule, the interadty of the
VisDB system is gry important. Besides the options whichyide values for specific data items and color ranges
(for details see [51]), the user may get important additional informatioarlging the query ranges and weighting

factors using the sliders.

3.2 Artificial Data

Many visualization technigues and their potentialdhbeen demonstrated by using data from certain application

areas. Lacking in all this aeiiy is ary quantitatve esidence of har effective the techniques areo Het bgond
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the current demonstrational stage, a basisvaliuation needs to bewdoped. © progress, we need to kmevith

certainty what is wrking and which adjustments are leading to an ingment.

Evaluations of the time perforance are usually done by using canonical test data sets and standardized testing
procedures, so-called benchmarks. Instead of establishinegadst data set fovauating the perception, we use
a general test data generation model which can be used for a standardized andwguestitadj of visualization
technique$58]. The model allers the generation of test data sets with characteristics similar to those of real data
sets. Unlile real data sets, Wwever, the characteristics of the artificially generated data sets mayibd arbitrari-
ly. We may for example, \ary the correlation coiient of two dimensions, the mean anariance of some of the
dimensions, the location, size, and shape of clusters,atgny the data characteristics in a controlled manner is
crucial for evaluating the perceptibility of data characteristics in the visualizations. Controlled test senefoallo
example, finding the point where certain data characteristics are perceptible for the first time, or the point where

they are no longer perceptible.

The TestVis test data generation toolwddoped at the Umersity of Munich partially implements the test data
generation model described[B8] and allavs the specification of a wide range of data characteristics. The main
focus is on database ¢ikest data sets which in general are best described by statistical parameters such as distri-
butions, correlations, functional dependencies, and clustersieBtiéis tool allows the specification of data with
an arbitrary dimensionality and an arbitrary number of clusterss&ch dimension, the user may specify the dis-
tribution function or the functional dependgngiso the size and shape of the clusters as well as the properties for
each of the cluster dimensions can be specified. The functional dependencies that may be specifietegsifig the

tool are of the form
i—1
a; = (L+rx f)xaz Ci1Xq
=1

Ciz

e

with
- a; being the functional dependent dimension

- & being the data dimensions on which the dimenaiois functionally dependent,

r being a randomly generatedriable in the range of [-1,1],
- ¢, andc;, being usespecified constantsand
- f being a usespecified &ctor which induces a certain randomness of the data.

To avoid gyclic dependencies, without loss of generalitg assume that dimensiap only depends on dimensions

a,, ..., @;_ - A detailed description of thEestVis system can be found in [51].

In the following, we praide examples for generated test data sets and the corresponding visualizations. First,
we evaluate the perceptibility of data characteristics in visualizations generated by our techniques. Due to space
limitations, in this step we only use visualizations generated by using the generalized spiral technigree df de
Then, we compare our techniques to the parallel coordinate and stick figure visualization techniques/e/hich ha

been introduced in section 2. In general, the test data sets used in this article consigeshadamly generated
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base data set which meskup about tevrthirds of the data, and one or multiple clusters whiste ladiferent di-

mensionality or are defined by usingfelient distrilutions and functional dependencies.

Cluster with Different Dimensionality

In Figure8, we present visualizations of fedimensional clusters in six-dimensional data. The data set used to
generate the visualizations consists of 15,000 data itemaesthirds of the data is generated randomly in the range
of [0, 100] for each of the dimensions, and the remaining one third of the data defines three clusters which are
generated by inserting additional data items in spedfisevranges of the cluster dimensions. As a qugipme
we use the range [0, 10] for all six dimensions. In the resulting visualization (cf. Bajytbe fowdimensional
clusters are onlyaguely visible. By changing the weightingcfors, haever, the clusters can be made clearly
perceptible (cfFigure8b). In general, clusters withier dimensionality can be made perceptible by setting the
weighting fictor of one dimension to a significantly highatue than the weightingttors of the other dimen-
sions. The dimension which is chosen twenthe higher weight is arbitraryhe clustering in the visualization,
however, is much better if a cluster dimension is chosen.

In experimenting with similar test data sets, we found thatxtension of the cluster in multidimensional space
has only a minor &ct on the visualization. More important is the percentage of data items that form the cluster
Small clusters are only pergable if thegy are close to the querygien and hee characteristics which are distinctly
different from the remaining data items. The percentage of data items that need to be part of the cluster for the clus-
ter to be perceptible depends on the distinctness between base data anawclttstedimensionality of the data,
and on the distance between cluster and qugigneThe latter problem can be resmlyfor &«ample, by inerting
the ordering of data items in the visualizations, which causes data items géhdestances to be closer to the

center and therefore to be more visible.

Cluster with Different Data Distributions

In Figure9, we present visualizations which are generated by usifegatif data distriltions for defining a
cluster The base data set consists of 10,000 data items, uniformlyutisttin the range 0000, 10000] for each
of the dimensions. The cluster consists of 1,000 data items and the cluster dimenfgpirs thié distriltion
functions used and in their parameters. The parameters of theutiistrifunctions for the cluster dimensions are

given in the folleving table:

uniform distritution Gaussian distriltion
attribute 1 2 3 4 5 6 7 8 9
lower limit -100 | -1000 | -10000| O 0 0 100 | 1000 | 5000
or mean
upper limit or 100 | 1000 | 10000 | 10 100 | 1000 | 1000 | 1000 | 5000
standard daation

As a query rgion, we use the range [0, 10] for each dimension. Since the qgéwy eand the clustenverlap in

dimensions one, toy four and fie, the cluster is easily visible in the center of the corresponding wantd.
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Figure9a). If another query gion is used, it is much more fildfult to percere the cluster (cf. Figurgb). It is in-
teresting that in the visualization there is no clustering visible for the dimension witfe adage uniform distri-
bution (dimension three) and only minor clustering occurs for the dimensions with a high standsirondli-

mensions six and nine). Thidedt becomesven more obious if the weightingdctor is waried (cf. Figurec).

Cluster with Functional Dependencies

In Figurel10, we present visualizations of test data which are generated by ufgngndifunctional dependen-
cies for defining a clusteFfhe base data setaig consists of 10,000 data items, uniformly distéal in diferent
ranges: [0, 1000] for dimensions one to three, [0, 2000] for dimensions four to six and [0, 1000000] for dimensions
seven to nine. The cluster consists of 2,000 data items. Dimensions one to three of the cluster are the independent
dimensions which are uniformly disttited in the range of [0, 1000]. The functional dependencies of the other di-

mensions are gén in the folleving table:

attribute 1 2 3 4 5 6 7 8 9
) . o linear dependeryc guadratic dependenc
functional uniform distrifution of attribute(s) of attritute(s)
dependeng in the range [0, 1000]
1 2,3 11,23 1 2,3 (1,23

As a query rgion, we use the origin of the nine-dimensional space. In Fiflaec, three visualizations of the
data are praded which were produced usingfdifent weightingdctors and an additional technique which we call
‘color inversion’. Color iversion means that the coloring of @lixis irverted with respect to the color scale. Note
that the cluster dimensions which depend on multiple other dimensions are much better perceptible. This is due to
the fact that diferences of the independent dimensions sum up to higleredi€es for the dependent dimension,
which are then better visible.

To use the described datgpéoration and visualization techniques afeetively as possible, it is necessary to
have a global dataxploration stratgy. Some of ourxperiences, dered from an intense use of our system, are
briefly described in the folleing: If a user has no information about the data, it is best to start with the origin of
the coordinate system as a queioa and all attribtes haing the same weightingé€tor The folloving steps are
largely guided by the visual feedback the user gets from the visualizations. If the user gets hints for correlations,
functional dependencies, ongkind of clustering, the user will try teevify the typotheses. & this purpose, the
user may change, foxample, the query ggon and/or the weightingattors. If there are no hints for interesting
data properties in the visualizations, the user may use a higher weigletioigfér an arbitrary dimension, use the
color irversion option, change the percentage of displayed data items orfasentiuery rgions. In this enu-

meration, the possibilities which according to axpexience are mostfettive are mentioned first.

3.3 Comparison with other Multidimensional Visualization Techniques

In this subsection, we compare our techniques with other visualization techniques for multidimensional data. F

the comparison, we use dwvell-knavn techniques that ka proven useful for database-ékdata — parallel co-
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ordinates and stick figures (cf. sect@nWe extended both techniques for the purpose of queryigg ldatabases

by coloring the stick figure icon and the lingiseents of the parallel coordinate technique using tleeadl dis-

tance. Additionallyin case of werlapping stick figures or line gments, we dra the most releant data items on

top of the less rel@ant data. Draing and coloring the data items according to thearall distances alles the

most releant data items to be easily located and compared. This is especially important in dealingevittatar
volumes. V& compare the techniques with respect to the number of data items, the number of dimensions, the vis-
ibility of certain types of clusters, etc.eMlso preide examples of visualizations of the real data sets from our

molecular biology application.

In Figurell, we present parallel coordinate visualizations of the test data set containing 15,000 six-dimensional
data items with three fotdimensional clusters. In the visualization (cf. Figlit@), only one cluster is visible. The
other two clusters are not visible due to theedap of data items. By using flifent query ranges, it is possible to
male the other clusters visible. Since the clusters arefatatit locations of the six-dimensional space, it is im-

possible to generate parallel coordinate visualizations thet stowe than one cluster at a time.

With the stick figure visualization, we also/eahe problem thatverlapping data may prent the visualizations
from being useful. If all 15,000 data items are visualized (cf. Figiiog, it is not possible to find structure in the
data. A reduction of the amount of data to 10% esdke visualization more useful (cf. Figdrd), allaving pat-
terns created by stick figures with similar shapes and colors to become perceptible. Noteytbathmeatisplayed
stick figures hee a similar shape, which means thaythee similar with respect to the dimensions that are assigned
to the limbs of the stick figure icon. The similarity suggests that these dimensions belong to.drchaserof the
stick figure technique, it is important which dimensions are assigned toethelfathe right dimensions (e.g., the
cluster dimensions) are chosen to be assigned to e eusters may become visible due to the high density of
stick figures in certain géons. In this case, n@ver, the density of stick figures at certain locations, and not the
multidimensionality of the stick figure icon, alle the user to find the clusters, which means that the séece ef
can be achieed by using scatterplot diagram®. e able to use the multidimensionality of the stick figure icon,

the overlap of data items needs to lweided by reducing the number of data items.

In Figurel2, we present parallel coordinate and stick figure visualizations of the test data set where the cluster
is defined using diérent distrilution functions (cf. Figur®). As in Figured, we use the origin of the coordinate
system as a querygen. Since the cluster is defined symmetrically around the origin, the cluster and its properties
are easily visible in the parallel coordinate visualization (cf. Fig@ed. Interesting are thefefts of the dilerent
distributions. D recall, the cluster is defined such that dimensions one to tiwveamgorm distrilutions with dif-
ferent ranges, dimensions four to sixé&aussian distriltions with diferent standard dé&tions, and dimensions
seven to nine hae Gaussian distriltions with diferent means. Note that for dimensions six and nineslue vange
of the cluster is layer than the alue range of the base data setaifsgthe visibility of a cluster and its properties

largely depends on the closeness of cluster and quginnre

The appearance of the stick figure visualizatiogdr depends on the dimensions which are assigned to the ax-

es. for the visualization presented in Figdrzb, dimensions fav and six are assigned to the@sxSince for both
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dimensions the cluster is defined as Gaussian disboibwith different standard @étions, the shape of the clus-
ter is wal in the visualization. The clustdrovever, is only visible since the querygien is in the middle of the
cluster and since the more nedat data items areverlaid and colored dirently Note that most of the data items
which are light green lva a similar shape. This means thaytaee similar with respect to the dimensions that are
assigned to the limbs of the stick figure icon.

We also used real data sets to compare our visual data mining techniques with the parallel coordinate and stick
figure techniques. In the folldng, we praide parallel coordinate and stick figure visualizations of our molecular
surface data. In the parallel coordinate visualizationRicfure13), hot spots such as data items withatige dis-
tances (cf. dimensions 8ysix, and s&n) are easily perceptible. Also easily obabtg are the range and distri-
bution of distance alues relatie to the query gon. The distances from the quergimn for dimensions one to
se/en are in their majority either positi (1 and 4-7) or mgtive (2 and 3). The visualization furthereals that
dimensions four to sen are discrete in nature, which is most easily obbdgvfor dimension six. Note thaten
for relatively small numbers of data items (the considered molecule consists of 2,560 triangles), there is a high de-
gree of @erlap in the visualization.

In case of the stick figure visualization (cf. Figld8, the &pressveness of the visualization ¢grly depends on
the assignment of dimensions to thesxdn cases of highverlay, the information that can be deduced from the
visualization is mainly restricted to the distrilon of data items with respect to the dimensions that are assigned
to the aes. The direct mapping of tndimensions to the ax, havever, also has a great aatvtage. Br all data sets
which hare dimensions with inherent 2D- or 3D-semantics, the mapping is of great help to relate the visualizations
to the real wrld entities. In case of the molecule swwd data, there are inherent 3D-semantics defined by the first
three dimensions. If tavof those dimensions are mapped to thesathe resulting visualization is a projection of
the 3D-surce of the molecule onto thoseotdimensions. In Figurg4, we proide ekample visualizations of XZ
YZ, and XZ-projections of the data.

In Tablel, we summarize the results of comparing our techniques to the parallel coordinate and stick figure vi-
sualization techniques and its colored dstives. Our generalized spiral angkaxechniques turn out to be the most
useful techniques for visualizingwy lage amounts of data. Both techniquesid overlapping data items and pro-
vide good results for most types of data characteristics. The xx#ptions are data sets whiclv@anherent 2D-
or 3D-semantics. The stick figure technique is best suited for data sets wiach lraited dimensionality and
inherent 2D- or 3D-semantics, or at leastgutar distrilution of \values for the tw dimensions that are assigned
to the ars. The stick figure technique helps to diszanost types of clusterstthe usefulness of the generated
visualizations lagely depends on the choice of theslimensions. The parallel coordinate visualization technique
is very useful for relatiely small data sets with Ige dimensionalityit is especially helpful for prading an wer-
view of the distrilution of distances and for disgring exceptional data items (hot spots). The coloredvdévies
of the parallel coordinate and stick figure techniques help te thakdata apparent, which are moreviaaié with
respect to the querWith respect to the task of visualizing the mostvate data, thgare therefore an impvement
over the original parallel coordinate and stick figure techniques. At the same timseehdhe color may distract

the users attention from the multidimensionality of the displagpecially in case of the stick figure visualization.
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Gene_ralizec Generalized _ _ Colored Parallel Colored
Spwgl Axe_s Stick Figure P Stick Figure$ Coordinates Para]lel

Technique | Technique Coordinates
max no. of data itends ~ ++ ++ ) + ) +
max no. of dimensiof$ + + (o] o + +
overlapping data itemis ++ ++ -- 3 -- 3
2D-/3D-semantics - - ++ ++ - -
hot spots + + o] + + ++
clusters + ++ o] o] o] o]
distributions + + ) +4 ) +4
funct. dependencies + + o] +4 o] +4

1. Only limited by the number of péls of the display in the case of the generalized spiral a&gltaghniques. Limited to
about 1,000 in case of parallel coordinate and stick figure techniques, and to about 5,000 for the remaining technique
2. Arbitrary in case of spiral, &s, and parallel coordinate techniques limited to a fied number (ten dimen-
sions for our stick figure icon) in case of the stick figure technique.
3. Due to coloring andwerlay, the more relant data items are visible in the colored aives.
4. Due to coloring anderlay, distritution and functional dependenclusters which are close to the query
region are more easily perceptible in the coloredvadvies of parallel coordinate and stick figure technique.

Table 1. Comparing the Generalized Spiral and Axes Techniqueswith
Parallel Coordinate and Stick Figure Visualization Techniques

Since none of the techniques performs best for dérdifit kinds of tasks, we belie that it is important to use
different visual data mining techniques in parallel. Thisxalthe a&ploitation of the strengths andads the weak-
nesses of the techniquesrfexample, in using th¥isDB system for gploring real data sets, it turned out to be
quite efective to use our spiral andextechniques to reduce the amount of data, and then switch to the stick figure,
and parallel coordinate techniques to furthgl@re the remaining, much smaller data set. Comparing the visual-
izations generated by fent visualization techniques is alsry interesting, since it alles a correlation of the

specific features of each visualization,yding more information than each of the visualizations independently

4. Implementation and Performance Evaluation

All visualization techniques presented in thevyes sections are implemented as part of the visualization and
data analysis syste¥isDB. The interactie interfice of the/isDB system allws the user to arbitrarily switch be-
tween the techniques, and to intenagly modify the queryweighting fictors, and percentage of displayed data
items. Additional features include the possibility to seleatlpi%o get the corresponding datdues presented in
certain fields. Details about the system are described in [51].

TheVisDB system is implemented in C++/M@ and runs under X-Wdows on HP 7xx machines. In imple-
menting the system, special consideration has b&en p tw aspects —dst recalculation of the visualizations,
which is crucial for alleving an interactie data gploration, and easyeensibility, which is necessary for adapting
the system to the needs offdient applications. Easyxtensibility is achiged by implementing the system in a

modular &shion, allaving userdefined distance and combinator functions as well asdigplay methods (e.qg.,
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new types of sliders and mevisualization techniques) to be easily grated. Interactity is achieed by using
efficient algorithms and adapting them for our purposes.

To evaluate the time &tiengy of theVisDB system, we performedwaral test series using artificially generated
test data sets with random distrilons. For the test series we used an HP 735 machine with 128 Mbyte of main
memory In performing the test series, the machiras wsed>lusively by theVisDB system, and therefore, the
measured CPU-times directly correspond to the elapsed time (reaction time of the system).

The steps in calculating the visualizations are presented in Ri§ufdter loading the data into main memory
theVisDB system calculates the distances, normalizes and combines them, determines the desired percentage of
data items with lvest wverall distances, and sorts them according to theiradl distance. The steps areeuted
one after another (no pipelining is used in our sequential implementation), and therefosgahéime(Tc, ) is
the sum of the time for each of the stélps,. depends on the number of data itdmsthe number of dimensions
(k), and the number of displayed data it€ijs

Teac(n K d) = Teaepist(M K) + Tormater (N K) + Teaiccomn(N K) + Teye(N, d) + Tormresurt(di K) + Teri(d)

The calculation performed in stepstvihree, and four has to be done for each ddtee\and therefor€-cpigt:
Trormattr @Nd Teaiccomb ONlY depend on the product of the number of data items and the number of dimensions
[O(n*K)]. In steps fie, six, and seen, the desired number of displayed data itédhdras to be considered. In
step5, thed data items with lvest averall distances are determined by computingdh®-quantile which can be
done in linear time using a bottom-up heap witdements, inserting the remainifigd) elements into the heap.
Since the heap contains at mosiements and sinekis a constant, the heap can béthn linear time. The actual
time compleaity however varies according to the distution of the data. The avst, aerage, and best case time
compleities of step 5 are presented graphically in FiguieThe ngt step, normalizing the distances 285], de-
pends on the number of data items that need to be normalized, multiplied by the number of din@fwins [
The final sorting step can be performed mditiefitly using the bcket sort algorithm. Theutzket sort is ideal for
our application since we use a linear mappingabdfies to colors and since the sorting granularity is limited. F
our purpose, it is sfi€ient to use alrcket sort where the number afidkets correspond to the number of colors.
The time compleity of the hucket sort algorithm i©(d + b) [59] whereb is the number of dickets. Since in our
caseb is constantlf = #colors = 256), the complety is linear [O(d)]. Note that agin the compleity is indepen-
dent of the data and their disuitipn.

The overall time complgity of our algorithm is the sum of the time comptes for each of the steps
[O(nx k) +O(n) + O(d x k) + O(d)] , which corresponds to

O(n k)
sinced < n. Note that for a laye number of data items and constant screen resolutionpteeamd best case time
compleity are in the same order of magnitude. The time measuremeatsftakn empirical test series confirm
the linear dependeponn andk (cf. Figure17). In our empirical tests, we also compared the time portions which

are needed for each of the steps. From their graphical representation (cf1Bjgitreecomes atious that cal-

culating the distanced ¢, cpig) @and calculating the combinatioldyccomp) @re the most time-consuming steps
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which use more than 80% of theerall time. rtunately these steps are ideally suited for parallelization.de-
tails, the reader is referred to [51].

5. Conclusion

Visual data mining techniques are useful for thgl@ration and analysis of ige databases to find interesting
data clusters and their properties. Our approach to data mining aims at an adequate support of the human by the
computers, and combines database query and informationateehniques with metypes of visualization tech-
nigues. Using our visual data mining techniques, tens to hundreds of thousands of data items with an arbitrary di-
mensionality can be visualized on the screen at the same tinaaliférent visualization techniques- all imple-
mented as part of théisDB system—support the user in dédrent phases of the dataptoration process. The
results of using our visual data mining techniques ifieidint areas skothat visual data mining techniques are of
high importance for a wide range of applications including data mining tasks (finding correlations between at-
tributes, finding groups of similar data, and finding hot spots) and similaritwedtfiimding an adequate combi-
nation of \alue ranges).d¢f a comparison of our techniques with the parallel coordinate and stick figure techniques,
we use real data from a molecular biology application and artificial test data sets generated according to a systematic
test data model. @/shaev that our techniques are useful for visualizing a wide range of data characteristics and are
superior to the other techniques with respect to the amount of data that can be visualized at one point of time.

Future vork includes furthenaluations that need to determine which techniques are most appropriate for specific
types of correlations, clusters, and functional dependenciesvalia&ons are also necessary as basis for wapro
ing existing visual data mining techniques and for visualizimgndager amounts of data. Also important is to di-
rectly interface our system with commerciallyadlable database systems. As firseistications shwy, current da-
tabase systems are only useful to a limitedred for supporting interage visualization systems such as\ti€DB
system. Database systems support high transaction ratesastdeairch of specific data itemst most of them
do not preide a suficient performance for range queries on multiple attab which are required by our system.
A possible solution of this problem is the use of multidimensional data structures. Fortkimeads to determine
which multidimensional data structures are best suited for our application. Another problem of current database
systems is that the queries axe@ited separately and no support for incrementally changing queriegitefdro
which would be needed for real interadty of the VisDB system in dealing withery lage databases containing
millions of data items. This brief enumeration of problems demonstrates ¥ekiglag a secondary storage based
version of the/isDB system using commerciallyailable database systems posesyniateresting research ques-
tions which need to be sad.
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Footnote 1 on page 9

The quality of the B/W ersion of our visualizations is rather bad compared to the quality of the color visualizations
on the screen. Structures in the visualizations which are easy tovpdrctie color grsion might therefore be
difficult to percere in the B/W ersion. A color postscriptrsion of the paper may be obtained from our ftpeserv
(URL: ‘ftp://arcadia.informatik.uni-muenchen.de/pub/local/dbs/pubs/TKDE96.ps’). Readers who deaatcha
cess to the wrld wide web may obtain a color papersion upon request from the authors.
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Figure 1: Arrangement of Attribute Windows for Data with Six Attributes
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Figure 2: Generalized Spiral Arrangement of one Attribute (degree of local pattern is 8)
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Figure 3: Generalized Axes Arrangement of one Attribute (degree of local pattern is 4)
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b. A Family of Stick Figures
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Figure5: Stick Figure Visualization Technique
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Figure 4: Parallel Coordinate Visualization Technique
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University of Massachusetts at Lowell; cf. [GFB&/)

Figure6: Stick Figure Visualization of Census Data
(used by permission of G. Grinstein, Institute of Visualization and Perception Research,



a. Spiral Technique b. Axes Technique
Figure 7: Partitioning a M olecule into Regions by using Properties of the Triangulation

a. Four-dimensional Cluster b. Higher Weight of Attribute 2

Figure 8: Four-dimensional Cluster in Six-dimensional Data
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Figure9: Cluster Defined by Different Data Distributions
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Figure 10: Effect of Color Inversion

a 4-dim.Clusters b. 100% of the Data c. 10% of the Data
Figure 11: Four-dimensional Clustersin Six-dimensional Data

a. Parallel Coordinate Visualization b. Stick Figure Visualization

Figure 12: Clusters Defined by Different Distributions



Figure 13: Parallel Coordinate Visualization of the Molecule Surface Data
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Figure 15: Stepsin Calculating the Visualizations
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Figure 18: Time Portions Needed for each of the Steps



