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Abstract

In this paper, we propose a new method for index-
ing large amounts of point and spatial datain high-
dimensiona space. An analysis shows that index
structures such as the R* -tree are not adequate for
indexing high-dimensional data sets. The major
problem of R-tree-based index structures is the
overlap of the bounding boxes in the directory,
whichincreaseswith growing dimension. To avoid
this problem, we introduce a new organization of
thedirectory which usesasplit algorithm minimiz-
ing overlap and additionally utilizesthe concept of
supernodes. The basic idea of overlap-minimizing
split and supernodes is to keep the directory as hi-
erarchical aspossible, and at the sametimeto avoid
splitsinthedirectory that wouldresultin high over-
lap. Our experiments show that for high-dimen-
sional data, the X-tree outperformsthewell-known
R*-tree and the TV-tree by up to two orders of
magnitude.

1. Introduction

In many applications, indexing of high-dimensional
data has become increasingly important. In multimedia da-
tabases, for example, the multimedia objects are usually
mapped to feature vectors in some high-dimensional space
and queriesare processed against adatabase of thosefeature
vectors[Fal 94]. Similar approachesaretakenin many other
areas including CAD [MG 93], molecular biology (for the
docking of molecules) [SBK 92], string matching and se-
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quence alignment [AGMM 90], etc. Examples of feature
vectors are color histograms [SH 94], shape descriptors
[Jag 91, MG 95], Fourier vectors[WW 80], text descriptors
[Kuk 92], etc. In some applications, the mapping process
does not yield point objects, but extended spatial objectsin
high-dimensional space[MN 95]. In many of the mentioned
applications, the databases are very large and consist of mil-
lions of data objects with several tensto afew hundreds of
dimensions. For querying these databases, it is essential to
use appropriate indexing techniques which provide an effi-
cient accessto high-dimensional data. Thegoal of thispaper
is to demonstrate the limits of currently available index
structures, and present a new index structure which consid-
erably improves the performance in indexing high-
dimensional data.

Our approach ismotivated by an examination of Rtree-
based index structures. One major reason for using R-tree-
based index structuresisthat we haveto index not only point
data but also extended spatial data, and R-tree-based index
structuresarewell suited for bothtypesof data. In contrast to
most other index structures (such as kdB-trees [Rob 81],
grid files [NHS 84], and their variants [see e.g. SK 90]),
R-tree-based index structures do not need point transforma-
tions to store spatial data and therefore provide a better
spatia clustering.

Some previous work on indexing high-dimensional
data has been done, mainly focussing on two different ap-
proaches. Thefirst approach isbased on the observation that
real data in high-dimensional space are highly correlated
and clustered, and therefore the data occupy only some sub-
space of the high-dimensional space. Algorithms such as
Fastmap [FL 95], multidimensional scaling [KW 78], prin-
cipal component analysis [DE82], and factor analysis
[Har 67] take advantage of this fact and transform data ob-
jectsinto some lower dimensional space which can be effi-
ciently indexed using traditional multidimensional index
structures. A similar approach is proposed in the SS-tree
[WJ96] which is an R-tree-based index structure. The SS-
tree uses ellipsoid bounding regionsin alower dimensional
space applying a different transformation in each of the di-
rectory nodes. The second approachisbased onthe observa-
tion that in most high-dimensional datasets, asmall number



of the dimensions bears most of the information. The
TV-tree [LIF94], for example, organizes the directory in a 45
way that only the information needed to distinguish between
data objects is stored in the directory. This leads to a highe i
fanout and a smaller directory, resulting in a better query
performance.

For high-dimensional data sets, reducing the dimen-
sionality is an obvious and important possibility for dimin-
ishing the dimensionality problem and should be performed
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whenever possible. In many cases, the data sets resultin 5
from reducing the dimensionality will still have a quite large 0 ‘ ‘ — b
dimensionality. The remaining dimensions are all relatively 2 4 6 8 10 2 1 16

important which means that any efficient indexing method
must guarantee a good selectivity on all those dimensiong
Unfortunately, as we will see in section 2, currently avail-

able index structures for spatial data such as thieeR*do

not adequately support an effective indexing of more that
five dimensions. Our experiments show that the perfor-
mance of the Rtree is rapidly deteriorating when going to

higher dimensions. To understand the reason for the perfoéhounts (up to 10MBytes) of randomly generated as well

mance problems, we carry out a detailed evaluation of the '\ jata (point data and extended spatial data). Our ex-
overlap of the bounding boxes in the directory of the eriments show that on high-dimensional data, tHeex-

o ot perors he Tireeand the Rree by ordrs of mag-
9 y pidly 9 Dhitude (cf.sectiond). For dimensionality larger than 2, the

about 90% when increasing the dimensionality to 5. In su %-tree is Ub to 450 times faster than thetRee and between
section 3.3, we provide a detailed explanation of the increaﬁ-and 12 til?nes faster than the Thée. The Xtree also pro-

ing overlap and show that the high overlap is not dreR- o m\ch faster insertion times (about 8 times faster than
specific prloéjlem, but a general problem in indexing h|gh-d|—the R*tree and about 30 times faster than thetie)
mensional data. '

dimension

Figure 1: Performance of the R-tree
Depending on the Dimension (Real Data)

Based on our observations, we then develop an im-
proved index structure for high-dimensional data, theeé- 2. Problems of (R-tree-based) Index
(cf. section3). The main idea of the ¥ee is to avoid over- Structuresin High-Dimensional Space
lap of bounding boxes in the directory by using a new orga-
nization of the directory which is optimized for high-
dimensional space. ThetXee avoids splits which would re-
sult in a high degree of overlap in the directory. Instead
allowing splits that introduce high overlaps, directory nodej
are extended over the usual block size, resulting in so-call
supernodes. The supernodes may become large and the f

ear scan of the large supernodes might seem to be a probl CRaracteristics of the Riree and found that theverlap in

The alternative, however, would be to introduce high over e directory is increasin rapidly with areving. di-
lap in the directory which leads to a fast degeneration of thté1 y gewy rapialy 9 9

filtering selectivity and also makes a sequential search of arﬂ:)erfjéogilgg tcc))ftthhee iaetf" %‘:}%e%g:;z g:;ﬁ%¥ Silrrr:acltely
subnodes necessary with the additional penalty of many raffor coPoN¢ - query p P
nt queries multiple paths v&to be folloved. Oerlap

dom page accesses instead of a much faster sequential red

The concept of supernodes has some similarity to the idea bf '€ directory is a relately imprecise term and there is
oversize shelvelGN 91]. In contrast to supernodes, over- no generally accepted definition especially for the high-di-

size shelves are data nodes which are attached to interﬁ%ﬁigﬂgg?légi: In the folling, we therefore prade def-
nodes in order to avoid excessive clipping of large objecté. P-

Additionally, oversize shelves are organized as chains of o
disk pages which cannot be read sequentially. 2.1 Déefinition of Overlap

In our performance valuation of the R*ree, we
Ofpund that the performance deteriorates rapidly when going
o higher dimensions (cFigure ). Effects such as awer
anout in higher dimensions do napéain this fct. In try-
fg to understand thefetts that lead to the performance

oblems, we performed a detailaglkiation of important

We implemented the Xree index structure and per- Intuitively, overlap is the percentage of the volume that
formed a detailed performance evaluation using very largg covered by more than one directory hyperrectangle. This
intuitive definition of overlap is directly correlated to the
1. According to [BKSS90], the R*tree pwi?;S a consistently better query performance since in processing queries, overlap of
performance than the Ree [GutB4] and R -tree [SRR87] over @ giractory nodes results in the necessity to follow multiple

wide range of data sets and query types. In the rest of this paper . .
therefore restrict ourseds to the R#ree. paths, even for point queries.
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Figure 2: Overlap of R*-tree Directory Nodes depending on the Dimensionality

Definition 1a (Overlap)

The overlap of an R-tree node is the percentage of space
covered by more than one hyperrectangle. If the R-tree
node contains n hyperrectangles { Ry, ... R} , the overlap
may formally be defined as
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Overlap =
"i O{1...n}

The amount of overlap measured in definition laisre-
lated to the expected query performance only if the query
objects (points, hyperrectangles) are distributed uniformly.
A moreaccurate definition of overlap needsto takethe actu-
al distribution of queriesinto account. Sinceitisimpossible
to determine the distribution of queries in advance, in the
following we will use the distribution of the data as an esti-
mation for the query distribution. This seems to be reason-
able for high-dimensional data since data and queries are
often clustered in some areas, whereas other areas are virtu-
ally empty. Overlapin highly populated areasis much more
critical than overlap in areas with alow population. In our
second definition of overlap, the overlapping areas are
therefore weighted with the number of data objectsthat are
located in the area.

Definition 1b (Weighted Overlap)

Theweighted overlap of an R-tree nodeisthe percentage of
dataobjectsthat fall in the overlapping portion of the space.
More formally,
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WeightedOverlap =

i0{1...n}

1. |A|l denotes the volume covered by A.
2. |Al" denotes the number of data elements contained in A

In definition 1a, overlap occurring at any point of space
equally contributes to the overall overlap even if only few
data objects fall within the overlapping area. If the query
pointsare expected to be uniformly distributed over the data
space, definition lais an appropriate measure which deter-
minesthe expected query performance. If the distribution of
queriescorrespondsto thedistribution of thedataand isnon-
uniform, definition 1b corresponds to the expected query
performance and is therefore more appropriate. Depending
onthe query distribution, we haveto choose the appropriate

definition.

So far, we have only considered overlap to be any por-
tion of space that is covered by more than one hyperrectan-
gle. In practice however, it is very important how many
hyperrectangles overlap at a certain portion of the space.
The so-called multi-overlap of an R-tree node is defined as
the sum of overlapping volumes multiplied by the number of
overlapping hyperrectangles relative to the overall volume
of the considered space.

InFigure 3, we show atwo-dimensional example of the
overlap according to definition 1a and the corresponding
multi-overlap. The weighted overlap and weighted multi-
overlap (not showninthefigure) would correspondto thear-
eas weighted by the number of data objects that fall within
the areas.

Figure 3: Overlap and Multi-Overlap of
2-dimensional data



2.2 Experimental Evaluation of Overlap in
R*-tree Directories

Inthissubsection, weempirically evaluatethe devel op-
ment of the overlap in the R*-tree depending on the dimen-
sionality. For the experiments, we usetheimplementation of
the R*-tree according to [BKSS 90]. The data used for the
experiments are constant size databases of uniformly dis-
tributed and rea data. The real data are Fourier vectors
which are used in searching for similarly shaped polygons.
The overlap curves presented in Figure 2 show the average
overlap of directory nodesaccording to definition 1. Inaver-
aging the node overlaps, we used all directory levels except
theroot level sincetheroot page may only contain afew hy-
perrectangles, which causesahighvariance of theoverlapin
theroot node.

In Figure 2a, we present the overlap curves of R*-trees
generated from 6 MBytes of uniformly distributed point da-
ta. As expected, for a uniform distribution overlap and
weighted overlap (definition 1aand 1b) providethe samere-
sults. For dimensiondlity larger than two, the overlap (cf.
Figure 2a) increases rapidly to approach 100% for dimen-
sionality larger than ten. Thismeansthat even for point que-
ries on ten or higher dimensiona data in amost every
directory node at least two subnodes have to be accessed.
For real data (cf. Figure 2b), the increase of the overlap is
even more remarkable. The weighted overlap increases to
about 80% for dimensionality 4 and approaches 100% for
dimensionality larger than 6.

3. The X-tree

The X-tree (eXtended node tree) is a new index struc-
ture supporting efficient query processing of high-dimen-
sional data. Thegoal isto support not only point databut also
extended spatial dataand therefore, the X -tree usesthe con-
cept of overlapping regions. Fromtheinsight obtained inthe
previous section, it is clear that we have to avoid overlap in
the directory in order to improve the indexing of high-di-
mensional data. The X-tree therefore avoids overlap when-
ever it is possible without allowing the tree to degenerate;
otherwise, the X-tree uses extended variable size directory
nodes, so-called supernodes. In addition to providing a di-
rectory organization which is suitable for high-dimensional
data, the X-tree uses the avail able main memory more effi-
ciently (in comparison to using acache).

TheX-treemay beseenasahybrid of alinear array-like
and ahierarchical R-tree-likedirectory. Itiswell established
that inlow dimensionsthe most efficient organi zation of the
directory is a hierarchical organization. The reason is that
theselectivity inthedirectory isvery highwhich meansthat,
e.g. for point queries, the number of required page accesses
directly correspondsto the height of thetree. This, however,
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Figure 4: Structure of a Directory Node

C—Normal Directory Nodes = Supernodes © Data Nodes
Figure5: Structure of the X-tree

isonly trueif thereis no overlap between directory rectan-
gleswhichisthecasefor alow dimensionality. Itisalsorea
sonable, that for very high dimensionality a linear
organization of thedirectory ismoreefficient. Thereasonis
that due to the high overlap, most of the directory if not the
wholedirectory hasto be searched anyway. If thewhole di-
rectory has to be searched, a linearly organized directory
needs less space! and may be read much faster from disk
than a block-wise reading of the directory. For medium di-
mensionality, an efficient organization of the directory
would probably bepartially hierarchical and partially linear.
The problem is to dynamically organize the tree such that
portions of the data which would produce high overlap are
organized linearly and those which can be organized hierar-
chically without too much overlap are dynamically orga-
nized in a hierarchical form. The agorithms used in the
X-tree are designed to automatically organize the directory
as hierarchical as possible, resulting in a very efficient
hybrid organization of the directory.

3.1 Structureof the X-tree

Theoverall structureof the X-treeispresentedin Figure
5. Thedatanodes of the X-tree contain rectilinear minimum
bounding rectangles (MBRs) together with pointers to the
actual data objects, and the directory nodes contain MBRs
together with pointers to sub-MBRs (cf. Figure 5). The
X-tree consists of three different types of nodes: datanodes,
normal directory nodes, and supernodes. Supernodes are
largedirectory nodes of variable size (amultiple of theusual
block size). Thebasic goal of supernodesisto avoid splitsin
the directory that would result in an inefficient directory
structure. Thealternativeto using larger nodesizesarehigh-
ly overlapping directory nodes which would require to ac-
cess most of the son nodes during the search process. This,
however, ismoreinefficient than linearly scanning the larg-
er supernode. Note that the X-tree is completely different
from an R-treewith alarger block size since the X-tree only
consists of larger nodes where actually necessary. Asare-
sult, the structure of the X-tree may be rather heterogeneous
asindicatedin Figure5. Duetothefact that theoverlapisin-

1. In comparison to a hierarchically organized directory, a linearly
organized directory only consists of the concatenation of the nodes
on the lowest level of the corresponding hierarchical directory and
is therefore much smaller.



creasing with the dimension, the internal structure of the  There are two interesting special cases of theX: (1)
X-tree is also changing with increasing dimensiofigure  none of the directory nodes is a supernode and (2) the direc-
5, three examples of Xees containing data of different di- tory consists of only one large supernode (root). In the first
mensionality are shown. As expected, the number and sizase, the Xree has a completely hierarchical organization
of supernodes increases with the dimension. For generatirg the directory and is therefore similar to arir&. This
the examples, the block size has been artificially reduced fase may occur for low dimensional and non-overlapping
obtain a drawable fanout. Due to the increasing number artiita. In the second case, the directory of thiee¥4s basi-
size of supernodes, the height of ther&e which corre- cally one root-supernode which contains the lowest directo-
sponds to the number of page accesses necessary for paintlevel of the corresponding ®ee. The performance
gueries is decreasing with increasing dimension. therefore corresponds to the performance of a linear directo-
. , ) ry scan. This case will only occur for high-dimensional or
Supernodes are created during insertion only if there igighly overlapping data where the directory would have to
no other possibility to avoid overlap. In many cases, the crg;g completely searched anyway. The two cases also corre-
ation or extension of supernodes may be avoided by choogpond to the two extremes for the height of the tree and the
ing an overlap-minimal split axis (cf. subsection 3.3). For &jjrectory size. In case of a completely hierarchical organiza-
fast determination of the overlap-minimal split, add|t|onaltion, the height and size of the directory basically corre-
information is necessary which is stored in each of the dire%‘pond to that of an Ree. In the root-supernode case, the

tory nodes (cfFigure 9. If er'10ugh. main memory is ayail- size of the directory linearly depends on the dimension
able, supernodes are kept in main memory. Otherwise, the

nodes which have to be replaced are determined by a priorifyj; 5 (D) = DatabaseSize [BytesFloat [D
function which depends on level, type (normal node or su- BlockSize [StorageUtil.

pernode), a.nd. size of_ the nodes. According tq our experi-  For 1 GBytes of 16-dimensional data, a block size of
ence, the priority function, (type + ¢, evel + ¢ [size With 4 KBytes, a storage utilization of 66% for data nodes, and 4
¢, » ¢ » ¢4 is a good choice for practical purposes. Note thabytes per float, the size of the directory is about 44 MBytes

the storage utilization of supernodes is higher than the stoﬁ%r the roI()'E[-sluphe;rnoder]_|n ::((j)_ntratst to abouMiytes for
age utilization of normal directory nodes. For normal direc- € completely erarchical directory.

tory nodes, the expected storage utilization for uniformly,
distributed data is about 66%. For supernodes of siz

m [BlockSize, the expected storage utilization can be deter-  The most important algorithm of thetree is the inser-
mined as the average of the following two extreme casegon algorithm. The insertion algorithm determines the
Assuming a certain amount of data occupiegsn blocks  structure of the Xree which is a suitable combination of a
for a maximally filled node. Then the same amount of dathierarchical and a linear structure. The main objective of the
_ 2 _ o _ algorithm is to avoid splits which would produce overlap.
requires X O—— blocks when using a minimally filled The algorithm (cfFigure 7 first determines the MBR in
node. On the average. a supernode storing the same amowh|ch toinsert the data ot_)ject and recurswe_zly calls the inser-
' 9¢, P 9 H8|I1 algorithm to actually insert the data object into the cor-

2 . N X X X
. il _ omMm(2m-1) responding node. If no split occurs in the recursive insert,
of data requires % tm+ X m—1E(2 = X7 2m-2 U only the size of the corresponding MBRs has to be updated.
blocks. From that, we obtain a storage utilization ofln case of a split of the subnode, however, an additional
m@em-1)g_ 2m-2 . _ _ MBR has to be added to the current node which might cause
g > E= which for largem is consider-  an overflow of the node. In this case, the current node calls
m-2 20m-1 . . - . . . .

i . the split algorithm (cfFigure § which first tries to find a
ably higher than 66%. Far=5, for example, the storage uti- gpit of the node based on the topological and geometric
lization is about 88%. properties of the MBRs. Topological and geometric proper-
ties of the MBRs are for example dead-space partitioning,

—J extension of MBRs, etc. The heuristics of the tRee

e ] . . [BKSS 90] split algorithm are an example for a topological

' split to be used in this step. If the topological split however
results in high overlap, the split algorithm tries next to find
an overlap-minimal split which can be determined based on
the split history (cf. subsection 3.3). In subsection 3.3, we
COOOOOO00O00O00000000 show that for point data there always exists an overlap-free
split. The partitioning of the MBRs resulting from the over-

.2 Algorithms

D=32: _:l_ lap-minimal split, however, may result in underfilled nodes
COOODODOOOOOOOOOOOOO which is unacceptable since it leads to a degeneration of the
tree and also deteriorates the space utilization. If the number

Figure 6: Various Shapes of the X-tree of MBRs in one of the partitions is below a given threshold,

in different dimensions the split algorithm terminates without providing a split. In



int X_DirectoryNode::insert(DataObject obj, X_Node **new_node)
{

SET_OF_MBR *sl, *s2;

X_Node *follow, *new _son;

int return_value;

follow = choose_subtree(obyj); I/l choose a son node to insert obj into
return_value = follow->insert(obj, &new_son); /l insert obj into subtree
update_mbr(follow->calc_mbr()); [/l update MBR of old son node
if (return_value == SPLITH{
add_mbr(new_son->calc_mbr()); /linsert mbr of new son node into current node
if (num_of_mbrs() > CAPACITY) { Il overflow occurs

if (split(mbrs, s1, s2) == TRUE){
/ topological or overlap-minimal split was successfull
set_mbrs(sl);
*new_node = new X_DirectoryNode(s2);

return SPLIT;

}

else // there is no good split
*new_node = new X_SuperNode();
(*new_node)->set_mbrs(mbrs);
return SUPERNODE;

} }
} else if (return_value == SUPERNODE){ /I node ‘follow’ becomes a supernode

remove_son(follow);
insert_son(new_son);

return NO_SPLIT;

Figure7: X-treelnsertion Algorithm for Directory Nodes

this case, the current node is extended to become a supand reading 2 blocks with a probability of MaxO and one
node of twice the standard block size. If the same case occurock with a probability of (IMaxO). This estimation is

for an already existing supernode, the supernode is extendedly correct for the most simple case of initially creating a
by one additional block. Obviously, supernodes are onlgupernode. It does not take the effect of further splits into ac-
created or extended if there is no possibility to find a suitableount. Nevertheless, for practical purposes the following
hierarchical structure of the directory. If a supernode is creequation provides a good estimation:

ated or extended, there may be not enough contiguous space

on disk to sequentially store the supernode. In this case, thMaxO R UT o+ Ty, + Tepy) +(1-MaxO) AT o+ T1, + Tepy)

disk manager has to perform a local reorganization. Since= T+ 2UTq, +Tepy)
supernodes are created or extended in main memory, the lo- 0O MaxO =
cal reorganization is only necessary when writing back the

supernodes on secondary storage which does not occur fre- For realistic system values measured in our experi-

quently. ments Tjo = 20 ms;T, = 4ms, Tepy = 1 ms), the resulting
For point data, overlap in the ke directory may only MaxO value is 20%. Note that in the above formula, the fact

occur if the overlap induced by the topological split is beIOV\}hat the probability of a node being in main memory is

a threshold overlap value (MAX_OVERLAP). In that case increasingdue to the decreasing directory size in case of us-
the overlap-minimal split and the possible creation of a sund the supernode has not yet been considered. The other

pernode do not make sense. The maximum overlap vahé?nsmlnt of our algorithm (MIN_FANOUT) is the usual

which is acceptable is basically a svstem constant and d iinimum fanout value of a node which is similar to the cor-
P ally a syste Fesponding value used in other index structures. An appro-
pends on the page access tiMig), the time to transfer a

block from disk into main memoryT,), and the CPU time priate value of MIN_FANOUT is between 35% and 45%.

necessary to process a blo€kg). The maximum overlap The algorithms to query the X-tree (point, range, and
value (\/IaxOl) may be determined approximately by thenearest neighbor queries) are similar to the algorithms used

balance between reading a supernode of size 2*BlockSiZ8 the R*-tree since only minor changes are necessary in ac-
cessing supernodes. The delete and update operations are

1. MaxO is the probability that we ka to access both son nodes a's‘? S|mple mOdlflcat_IonS of the corregpondlng R*-tree al
because ofwerlap during the search. gorithms. The only difference occurs in case of an under-

T+ Tepy
Tio+Tr +Tepy




bool X_DirectoryNode::split(SET_OF_MBR *in, SET_OF_MBR *outl, SET_OF_MBR *out2)
{
SET_OF_MBR t1, t2;
MBR rl, r2;
/1 first try topological split, resulting in two sets of MBRs t1 and t2
topological _split(in, t1, t2);
ri=tl->calc_nbr(); r2 = t2->calc_nbr();
/1 test for overlap
if (overlap(rl, r2) > MAX_OVERLAP)
{
/1 topological split fails -> try overlap mninmal split
overlap_mnimal _split(in, t1, t2);
// test for unbal anced nodes
if (tl->numof_nbrs() < M N_FANQUT || t2->numof_nbrs() < M N_FANOUT)
/1 overlap-mnimal split also fails (->caller has to create supernode)
return FALSE;
}
*outl = t1; *out2 = t2;
return TRUE;
}

Figure8: X-tree Split Algorithm for Directory Nodes

flow of a supernode. If the supernode consists of two blocksiation that an overlap-free split is only possible if there is a
itis converted to a normal directory node. Otherwise, that idimension according to which all MBRs have been split
if the supernode consists of more than two blocks, we reduaince otherwise at least one of the MBRs will span the full
the size of the supernode by one block. The update operatioange of values in that dimension, resulting in some overlap.
can be seen as a combination of a delete and an insert op

ra-
tion and is therefore straightforward. el_emm_a 1 - _ .
For uniformly distrituted point data, arverlap-free split is

only possible ifthere is a dimension according to which all
MBRs in the node ha been pndously split. More

For determining an overlap-minimal split of a directory formally,
node, we have to find a partitioning of the MBRs inthe node  Split(S) is overlap-free -
into two subsets such that the overlap of the minimum odoq{1,...,D} OmbrQds:
bounding hyperrectangles of the two sets is minimal. In case mbr has been split according to d
of point data, it is always possible to find an overlap-free .
split, butin general itis not possible to guarantee that the twr0of (by contradiction):
sets are balanced, i.e. have about the same cardinality. " [0 " Assume that for all dimensions there is at least
oo . one MBR which has not been split in that dimension. This
Definition 2 (Split) means for uniformly distributed data that the MBRs span the
The splitof anod& = {mbr,, ..., mbr,} into two subnodes  full range of values of the corresponding dimensiwvith-
s, = Embri oo mbr, B and s, = Embri oMb, U out loss of generalityve assuméhat thembr which spans
1

3.3 Determining the Overlap-Minimal Split

S ] SzB the full range of values of dimensidris assigned t8;. As
(s,#0 ands, #0) s defined as aconsequencelBR(S,) spans the full range for dimension
i d. Since the extension ofBR(S,) cannot be zero in
Sit(S) = {(S, )| S=5,0S, 0§ nS,=0}. dimensiond, a split using dimensiathas split axis cannot be

overlap-free (i.e.MBR(S;) n MBR(S,) #0). Since for all

gy N dimensions there is at least one MBR which has not been
(1) overlap-minimalff [MBR(S,) n MBR(S,)[ isminimal o it i that dimension, we cannot find an overlap-free split.

(2) overlap-free  iff [MBR(S,) n MBR(S,)| = 0 " 0 ”: Assume thatan overlap-free split of the node is
(3) balanced iff —€<|S)-|S)<¢€. not possible. This means that there is no dimension which
o _ ) ~ can be used to partition the MBRs into two subSgasdS,.
For obtaining a suitable directory structure, we are inThis however is in contradiction to the fact that there is a di-

terested in overlap-minimal (overlap-free) splits which aremensiord for which all MBRs have been split. For uniform-
balanced. For simplification, in the following we focus on

overlap-freg S_plItS and ,assume _tO ha_ve hlgh'dlmensmnT According to our eperiments, the results generalize to real data
uniformly distributed point dathlt is an interesting obser- and @en to spatial data (cf. sectidi

The splitis called




split tree according to dimension 2 and 5, since the path from the root
5 node to the leaf C is labeled with 2 and 5. Obviously, all
MBRs of the split tree ifigure 9have been split according
to dimension 2, the split axis used in the root of the split tree.
In general, all MBRs in any split tree have one split dimen-
sion in common, namely the split axis used in the root node

of the split tree.
Node S

Lemma 2 (Existence of an Grlap-free Split)
For point data, anwerlap-free split avays eists.

|A ||A’B ||A’ B'C ||A‘ B"C D ||A” B"C D E|

Figure 9: Examplefor the Split History Proof (using the split history):

From the description of the split tree it is clear that all
MBRs of a directory node S have one split dimension in
common, namely the dimension used as split axis in the root
node of the split tree. Let SD be this dimension. We are able
. o _ to partition S such that all MBRs related to leaves in the left

According to Lemma 1, for finding an overlap-free split subtree of the root node are contained jrasd all other
we have to determine a dimension according to which aliBRs contained in § Since any point belonging tq Bas

MBRs ofShave been split previously. The split history pro-a Jower value in dimension SD than all points belonging to
vides the necessary information, in particular the dimens, the split is overlap-fréem

sions according to which an MBR has been split and which )

new MBRs have been created by this split. Since a split cre- One may argue that there may exist more than one over-
ates two new MBRs from one, the split history may be repI_ap-free split d|me_ns_|on Wh_lch is part of the split h_|story _of
resented as a binary tree, called the split tree. Each leaf nogibdata pages. This is true in most cases for low dimension-
of the split tree corresponds to an MBRSIfThe internal ahty, byt the probablhty.the_lt a second split dlmensmn exists
nodes of the split tree correspond to MBRs which do not exhich is part of the split history of all MBRs is decreasing
ist any more since they have been split into new MBRs pré@pidly with increasing dimensionality (dfigure 19. If
viously. Internal nodes of the split tree are labeled by théhere is no dimension which is in the split history of all
split axis that has been used; leaf nodes are labeled by tE3RS, the resulting overlap of the newly created directory
MBR they are related to. All MBRs related to leaves in theentriesis on the average about 50%. This can be_e_xplamed_as
left subtree of an internal node have lower values in the spifllows: Since atleast one MBR has not been splitin the split

dimension of the node than the MBRs related to those in tHdmensiond, one of the partitions (without loss of generali-
right subtree. ty: S;) spans the full range of values in that dimension. The

ly distributed point data, the split may be assumed to be i
the middle of the range of dimensidrand therefore, an
overlap-free split is possible using dimensiorm

Figure 9shows an example for the split history of a
node S and the respective split tree. The process starts wit
single MBR A corresponding to a split tree which consists of %8
only one leaf node labeled by A. For uniformly distributed| o.70
data, A spans the full range of values in all dimensions. Th
split of A using dimension 2 as split axis produces new
MBRs A’ and B. Note that A’ and B are disjoint because any] 050
pointin MBR A’ has a lower coordinate value in dimension| 40 |
2 than all points in MBR B. The split tree now has one inter- ’
nal node (marked with dimension 2) and two leaf nodes (A

0.60 |

and B). Splitting MBR B using dimension 5 as split axis cre-[ 020 | N

ates the nodes B’ and C. After splitting B’ and A’ again, we| 1o \\

finally reach the situation depicted in the right most tree of il

Figure 9where S is completely filled with the MBRs A”, B”, 000 a SR I ‘

C’ D and E. 2.00 8.00 14.00 20.00 26.00 32.00
According to Lemmd., we may find an overlap-free dimension

split if there is a dimension according to which all MBRs of
S have been split. To obtain the information according te

which dimensions an MBR X in S has been split, we only Figure 10: Probability of the Existence of a Second
have to traverse the split tree from the root node to the le: Overlap-free Split Dimension

that corresponds to X. For example, MBR C has been spl

1. If the splits hae not been performedkactly in the middle of the 2.  Note that the resulting split is not necessarily balanced since sorted
data space, at least avedap-minimal split is obtained. input data, for eample, will result in an unbalanced split tree.
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Figure 11: Speed-Up of X-tree over R*-tree on Real Point Data (70 M Bytes)

other partition S, spansat least half therange of valuesof the
split dimension d. Sincethe MBRsare only partitioned with
respect to dimension d, S; and S, span the full range of val-
ues of al other dimensions, resulting in atotal overlap of
about 50%.

The probability that a split algorithm which arbitrarily
chooses the split axis coincidentally selects the right split
axisfor an overlap-free splitisvery low in high-dimensional
space. Asour analysis of the R* -tree shows, the behavior of
the topological R*-tree split algorithm in high-dimensional
spaceis similar to arandom choice of the split axis since it
optimizes different criteria. If the topological split fails, our
split algorithm triesto perform an overlap-free split. Thisis
done by determining the dimension for the overlap-free split
as described above, determining the split value, and parti-
tioningthe MBRswithrespect tothesplit value. If theresult-
ing split is unbalanced, the insert algorithm of the X-tree
initiates the creation/extension of a supernode (cf. subsec-
tion 3.2). Note that for the overlap-minimal split, informa-
tion about the split history has to be stored in the directory
nodes. The space needed for this purpose, however, isvery
small sincethe split history may be coded by afew bits.

4. Performance Evaluation

To show the practical relevance of our method, we per-
formed an extensive experimental evaluation of the X-tree
and compared it tothe TV-tree aswell to asthe R*-tree. All
experimental results presented in this sectionsare computed
on an HP735 workstation with 64 MBytes of main memory
and several GBytesof secondary storage. All programshave
been implemented in C++ as templates to support different
types of dataobjects. The X-tree and R*-tree support differ-
ent types of queries such as point queries and nearest neigh-
bor queries; the implementation of the TV-tree! only
supports point queries. We use the original implementation

1. Weusetheoriginal implementation of the TV-tree by K. Lin, H. V.
Jagadish, and C. Faloutsos [LJF 94].

of the TV-tree by K. Lin, H. V. Jagadish, and C. Faloutsos
[LIF 94].

Thetest dataused for theexperimentsarereal point data
consisting of Fourier points in high-dimensional space
(D =2,4,8,16), spatial data (D = 2, 4, 8, 16) consisting of
manifolds in high-dimensional space describing regions of
real CAD-objects, and synthetic data consisting of uniform-
ly distributed points in high-dimensional space (D =2, 3,
4,6, 8,10, 12, 14, 16). The block size used for our experi-
mentsis 4 KByte, and all index structures were allowed to
use the same amount of cache. For arealistic evaluation, we
used very large amounts of datain our experiments. Theto-
tal amount of di sk space occupied by thecreated index struc-
tures of TV-trees, R*-trees, and X-treesis about 10 GByte
and the CPU timefor inserting the dataadds up to about four
weeks of CPU time. As one expects, the insertion timesin-
crease with increasing dimension. For all experiments, the
insertion into the X-tree was much faster than the insertion
intothe TV -treeand the R*-tree (up to afactor of 10.45 fast-
er than the R*-tree). The X-tree reached arate of about 170
insertionsper second for a150 MBytesindex containing 16-
dimensiona point data.

First, we evaluated the X-tree on synthetic databases
withvarying dimensionality. Using the same number of data
items over the different dimensions implies that the size of
the database is linearly increasing with the dimension. This
however has an important drawback, namely that in low
dimensions, we would obtain only very small databases,
whereas in high dimensions the databases would become
very large. It ismore realistic to assume that the amount of
datawhichisstored in the database is constant. This means,
however, that thenumber of dataitemsneedsto bevaried ac-
cordingly. For the experiment presented in Figure 13, we
used 100 M Bytedatabases containing uniformly distributed
point data. Thenumber of dataitemsvaried between 8.3 mil-
lionfor D=2 and 1.5 millionfor D=16. Figure 13, showsthe
speed-up of the search time for point queries of the X-tree
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over the R*-tree. As expected, the speed-up increases with
growing dimension, reaching values of about 270 for D=16.
For lower dimensions, the speed-up is still higher than one
order of magnitude (e.g., for D=8 the speed-up is about 30).
The high speed-up factors are caused by thefact that, dueto
thehigh overlap in high dimensions, the R*-tree needsto ac-
cessmost of thedirectory pages. Thetotal query timeturned
out to be clearly dominated by the 1/O-time, i.e. the number
of page accesses (see also Figure 12).

Since one may argue that synthetic databases with uni-
formly distributed dataare not realistic in high-dimensional
space, we also used real data in our experiments. We had
accessto large Fourier databases of variable dimensionality
containing about 70 Mbyte of Fourier data representing
shapes of polygons. Theresults of our experiments (cf. Fig-
ure 11) show that the speed-up of the total search time for
point queries is even higher (about 90 for D=4 and about
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Figure13: Speed-Up of X-treeover R*-treeon Point
Queries (100 MBytes of Synthetic Point Data)

320 for D=8) than the speed-up of uniformly distributed
data. Thisresult was surprising but correspondsto the high-
er overlap of real data found in the overlap curves (cf.
Figure 2). Additionally to point queries, in applications
with high-dimensional data nearest neighbor queries are
aso important. We therefore also compared the perfor-
mance of nearest neighbor queries searching for the 10
nearest neighbors. The nearest neighbor algorithm support-
ed in the X-tree and R*-tree is the algorithm presented in
[RKV 95]. The results of our comparisons show that the
speed-up for nearest neighbor queriesis still between about
10 for D=6 and about 20 for D=16. Since the nearest neigh-
bor agorithm requires sorting the nodes according to the
min-max distance, the CPU-time needed for nearest neigh-
bor queries is much higher. In Figure 12, we therefore
present the number of page accesses and the CPU-time of
the X-tree and the R*-tree for nearest-neighbor queries.
The figure shows that the X-tree provides a consistently
better performance than the R*-tree. Note that, in counting
page accesses, accesses to supernodes of size s are counted
as s page accesses. In most practical cases, however, the su-
pernodes will be cached due to the better main memory
utilization of the X-tree. For practically relevant buffer siz-
es(1 MByteto 10 MBytes) thereis no significant change of
page accesses. For extreme buffer sizes of more than 10
MBytes or less than 1 MByte, the speed-up may decrease.
The better CPU-times of the X-tree may be explained by
the fact that due to the overlap the R*-tree has to search a
large portion of the directory which in addition is larger
than the X-tree directory.

Figure 14 shows the total search time of point queries
depending on the size of the database (D=16). Note that in
thisfigurewe usealogarithmic scal e of they-axis, sinceoth-
erwisethe development of thetimesfor the X -treewould not
be visible (identical with the x-axis). Figure 14 shows that
the search times of the X-tree are consistently about two or-
ders of magnitude faster than those of the R*-tree
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(for D=16). The speed-up dlightly increases with the data-
basesizefrom about 100 for 20 MBytesto about 270for 100
MBytes. Also, as expected, the total search time of the
X-tree grows logarithmically with the database size which
meansthat the X-tree scaleswell to very large database siz-
€s.

We also performed acomparison of the X-treewith the
TV-tree and the R*-tree. With the implementation of the
TV-tree made available to us by the authors of the TV -tree,
we only managed to insert up to 25.000 dataitemswhichis
slightly higher than the number of data items used in the
original paper [LJF 94]. For the comparisons, we were
therefore not able to use our large databases. The results of
our comparisonsarepresented in Figure 16. The speed-up of
the X-tree over the TV -tree ranges between 4 and 12, even
for therather small databases. Itisinteresting to notethat the
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Figure 16: Comparison of X-tree, TV-tree, and
R*-tree on Synthetic Data

performance of the R* -treeis better than the performance of
the TV-treefor D smaller than 16.

In addition to using point data, we also examined the
performance of the X-treefor extended data objectsin high-
dimensional space. The results of our experiments are
shown in Figure 15. Since the extended spatial data objects
induce some overlap in the X-tree as well, the speed-up of
the X-tree over the R*-treeislower than for point data. Still,
we achieve a speed-up factor of about 8 for D=16.

5. Conclusions

In this paper, we propose a new indexing method for
high-dimensional data. Weinvestigate the effectsthat occur
in high dimensions and show that R-tree-based index struc-
tures do not behave well for indexing high-dimensional
gpaces. We introduce formal definitions of overlap and
show the correlation between overlap in the directory and
poor query performance. We then propose a new index
structure, the X-tree, which uses - in addition to the concept
of supernodes - a new split algorithm minimizing overlap.
Supernodes are directory nodeswhich are extended over the
usual block sizein order to avoid adegeneration of theindex.
We carry out an extensive performance evaluation of the
X-tree and compare the X-tree with the TV-tree and the
R*-tree using up to 100 MBytes of point and spatial data.
The experiments show that the X-tree outperforms the
TV-treeand R*-treeup to orders of magnitudefor point que-
ries and nearest neighbor queries on both synthetic and real
data.

Sincefor very high dimensionality the supernodes may
becomerather large, we currently work on aparallel version
of the X-tree which is expected to provide a good perfor-
mance even for larger data sets and the more time consum-
ing nearest neighbor queries. We also develop a novel
nearest neighbor algorithm for high-dimensional datawhich
isadapted to the X-tree.
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