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Abstract
Similarity search in multimedia databases requires an effi-
cient support of nearest-neighbor search on a large set of
high-dimensional points as a basic operation for query
processing. As recent theoretical results show, state of the
art approaches to nearest-neighbor search are not efficient
in higher dimensions. In our new approach, we therefore
precompute the result of any nearest-neighbor search
which corresponds to a computation of the voronoi cell of
each data point. In a second step, we store the voronoi cells
in an index structure efficient for high-dimensional data
spaces. As a result, nearest neighbor search corresponds to
a simple point query on the index structure. Although our
technique is based on a precomputation of the solution
space, it is dynamic, i.e. it supports insertions of new data
points. An extensive experimental evaluation of our tech-
nique demonstrates the high efficiency for uniformly dis-
tributed as well as real data. We obtained a significant re-
duction of the search time compared to nearest neighbor
search in the X-tree (up to a factor of 4).

1 Introduction

An important research issue in the field of multimedia
databases is the content based retrieval of similar multime-
dia objects such as images, text and videos [Alt+ 90]
[Fal+ 94] [Jag 91] [MG 93] [SBK 92] [SH 94]. However,
in contrast to searching data in a relational database, a con-
tent based retrieval requires the search of similar objects as
a basic functionality of the database system. Most of the ap-
proaches addressing similarity search use a so-called fea-
ture transformation which transforms important properties
of the multimedia objects into high-dimensional points
(feature vectors). Thus, the similarity search corresponds to
a search of points in the feature space which are close to a
given query point and, therefore, corresponds to a nearest
neighbor search. Up to now, a lot of research has been done
in the field of nearest neighbor search in high-dimensional
spaces [Ary 95] [Ber+ 97] [HS 95] [PM 97] [RKV 95].

Most of the existing approaches solving the nearest
neighbor problem perform a search on a priori built index
while expanding the neighborhood around the query point
until the desired closest point is reached. However, as recent
theoretical results [BBKK 97] show, such index-based ap-
proaches must access a large portion of the data points in
higher dimensions. Therefore, searching an index by ex-
panding the query region is, in general, inefficient in high di-
mensions. One way out of this dilemma is exploiting paral-
lelism for an efficient nearest neighbor search as we did in
[Ber+ 97].

In this paper, we suggest a new solution to sequential
nearest neighbor search which is based on precalculating
and indexing the solution space instead of indexing the da-
ta. The solution space may be characterized by a complete
and overlap-free partitioning of the data space into cells,
each containing exactly one data point. Each cell consists
of all potential query points which have the corresponding
data point as a nearest neighbor. The cells therefore corre-
spond to the d-dimensional Voronoi cells [PS 85]. Deter-
mining the nearest neighbor of a query point now becomes
equivalent to determining the Voronoi cell in which the
query point is located. Since the Voronoi cells may be rath-
er complex high-dimensional polyhedra which require too
much disk space when stored explicitly, we approximate
the cells by minimum bounding (hyper-)rectangles and
store them in a multidimensional index structure such as
the X-tree [BKK 96]. The nearest neighbor query now be-
comes a simple point query which can be processed effi-
ciently using the multidimensional index. In order to obtain
a good approximation quality for high-dimensional cells,
we additionally introduce a new decomposition technique
for high-dimensional spatial objects.

The paper is organized as follows: In section 2, we in-
troduce our new solution to the nearest neighbor problem,
which is based on approximating the solution space. We for-
mally define the solution space as well as the necessary cell
approximations and outline an efficient algorithm for deter-
mining the high-dimensional cell approximations. In
section 3, we then discuss the problems related to indexing
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the high-dimensional cell approximations and introduce our
solution which is based on a new decomposition of the ap-
proximations. In section 4, we present an experimental eval-
uation of our new approach using uniformly distributed as
well as real data. The evaluation unveils significant speed-
ups over the R*-tree- and X-tree-based nearest neighbor
search.

2 Approximating the Solution Space

Our new approach to solving the nearest neighbor
problem is based on precalculating the solution space. Pre-
calculating the solution space means determining the
Voronoi diagram (cf. figure 1a) of the data points in the da-
tabase. In the following, we recall the definition of Voronoi
cells as provided in [Roo 91].

Definition 1. (Voronoi Cell, Voronoi Diagram)
Let DB be a database of points. For any subset  of
size , , and a given distance function

, the order-m Voronoi Cell of A is de-
fined as

.

The order-m Voronoi diagram of DB is defined as

.
Note that we are primarily interested in the nearest

neighbor of a query point, and that we assume the Voronoi
cells to be bounded by the data space (DS). Therefore, in
the following we only have to consider bounded Voronoi
cells of order 1, which are also called NN-cells (cf.
figure 1b). 

Definition 2. (NN-cell, NN-Diagram)
For any Point  and a given distance function

, the NN-cell of P is defined as

.

The NN-Diagram of a database of points DB is defined as 

.

According to Definition 2, the sum of the volumes of all
NN-cells is the volume of the data space (cf. figure 1b):

.

If we are able to efficiently determine the NN-cells, to
explicitly store them, and to directly find the NN-cell
which contains a given query point, then the costly nearest
neighbor query could be executed by one access to the cor-
responding NN-cell. In general, however, determining the
NN-cells is rather time consuming and requires (at least)

 for  and  for  in the
worst case [PS 85] for an Euclidean distance function. In
addition, the space requirements for the NN-cells (number
of k faces of the NN-diagram) are

in the worst case [Ede 87], making it impossible to store
them explicitly. For a practicable solution, it is therefore
necessary to use approximations of the NN-cells, which is
a well-known technique that has been successfully used for
improving the query processing in the context of geograph-
ical databases [BKS 93]. In principle, any approximation
such as (hyper-)rectangles, rotated (hyper-)rectangles,
spheres, ellipsoids, etc. may be employed. In our applica-
tion, we use an approximation of the NN-cells by minimum
bounding (hyper-)rectangles and store them in a multidi-
mensional index structure such as the X-tree [BKK 96].
The nearest neighbor query can then be executed by a sim-
ple and very efficient point query on this index. In the fol-
lowing, we define the approximation of the NN-cells.

Definition 3. (MBR-Approximation of NN-cells)
The MBR approximation ApprMBR of a nearest neighbor
cell (NNC) is the minimum bounding (hyper-)rectangle

 of NNC, i.e. for :
 and .

Let us now consider examples of the NN-cells and
their MBR-approximations for a number of different data
distributions. Figure 2a and b show the NN-diagram and
the corresponding approximation diagram for two indepen-
dent uniformly distributed dimensions, figure 2c and d
show the two diagrams for a regular multidimensional uni-
form distribution, and figure 2e and f show the diagrams
for a sparse distribution. A uniform distribution is usually
generated by using a random number generator to produce
the data values for each of the dimensions independently.
This generation process produces a data set which - project-
ed onto each of the dimension axes - provides a uniform
distribution. It does not mean, however, that the data is dis-
tributed uniformly in multidimensional space, i.e. for a par-
titioning of the data space into cells of equal size that each

A DB∈
m := A 1 m N<≤

d :  ℜd ℜd× ℜ0
+→

VoronoiCell A( ) := 

x ℜd∈  Pi A∈( )∀  Pj DB\A∈( ):  d x Pi,( ) d x Pj,( )≤∀{ }

VoronoiDiagramm DB( ) := 

VoronoiCell A( )   A DB ⊂  A m=∧{ }

Figure 1: Voronoi diagram and NN-diagram
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P DB∈
d :  ℜd ℜd× ℜ0

+→
NN-Cell P( ) := 

x DS∈  P’ DB\ P{ }∈( ):  d x P,( ) d x P’,( )≤∀{ }

NN-Diagram DB( ) := NN-Cell P( )  P DB∈{ }
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N
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MBR l1 h1 … ld hd, , , ,( )= i 1 … d, ,=
li min pi p NNC∈{ }= hi max pi p NNC∈{ }=



of the cells contains an equal number of data points. A dis-
tribution which fulfills the latter requirement is called a
multidimensional distribution.

Note that the regular multidimensional uniform distri-
bution corresponds to the best case for our approach and
the sparse distribution corresponds to the worst case: In
case of the regular multidimensional uniform distribution,
the MBR approximations are identical with the NN-cells,
which means that the approximations do not have any over-
lap and therefore a point query on the index accesses only
one page. In contrast, in case of the sparse distribution al-
most all approximations are identical with the DS which
means that the approximations completely overlap and a
point query on the index accesses most data pages.

Let us now consider the space and time complexity of
our approximations: The MBR-approximation of a NN-cell
requires  space, which means that we need a total of
twice the size of the database for all points . De-
termining the approximation of a Voronoi cell can be seen
as a typical linear programming problem: We have a num-
ber of linear constraints (at most N-1) and try to find the
maximum extension of the NN-cell in  directions,
which directly correspond to the borders of the bounding
box. The time needed to determine the approximations is
therefore the time of  linear programming runs with at
most  linear constraint.

There are many well-known solutions to linear pro-
gramming problems. The most widely used approach is the
Simplex method [Dan 66]. The simplex method is based on
the observation that - if a solution exists - it must be a cor-
ner point of the solution space. The basic idea of the sim-
plex method is to start with a valid (but potentially sub-op-
timal) solution and then move along the boundary of the
polyhedra of valid solutions to find the corner point which
is optimal according to optimization function. A problem
of the simplex method is the first step, namely finding a
valid starting point. A revised version of the simplex meth-
od which avoids this problem is the algorithm of Best and
Ritter [BR 85]. The complexity of the algorithm is

 in the worst case where n is the number of points
considered in determining the approximation [PS 85]. In
the average case, the complexity is  [Sei 90]. 

One problem of all linear programming algorithms is
that they usually need to consider the constraints resulting
from all N points in the database (n=N), making the linear
programming prohibitively expensive for large databases.
An important observation, however, is that usually only a
small number of points actually contributes to the maxi-
mum extension of the NN-cell. In general, we may there-
fore restrict the number of points while still obtaining the
correct extension of the NN-cell. Since we are only inter-
ested in an approximation of the NN-cell, we may even
omit data points which contribute to the NN-cell, thereby
loosing the correct approximation of the NN-cell. This,
however, is acceptable since the determined approximation
may only become larger than the correct approximation
which means that we do not get false dismissals and there-
fore do not compromise the correctness of our approach
(cf. Lemma 1).

Based on this observation, our optimized algorithms
for calculating the approximations accept slightly subopti-
mal approximations in exchange for reducing the number
of points examined in the linear programming consider-
ably. For determining the points which are used in the lin-
ear programming, we use an index-based search for a num-
ber of points which are close to the considered point.
Closeness may be defined by a multidimensional point or
sphere query (from experiments, we obtained

 as a good heuristic value) which can be
executed efficiently using the multidimensional index. In
our experiments on uniformly distributed data, the ap-
proach provides very good results, i.e. the determined ap-
proximations are close to the correct approximations. On
real data, however, there is a much higher variation: The
number of points resulting from the multidimensional point
or sphere query varies in a wide range, which is a result of
the high clustering of the real data. The largely differing
numbers of points considered in the linear programming re-
sults in a high variance of the quality of the determined ap-

Figure 2: NN-cells and their MBR-approximations
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proximations and also of the time needed for determining
the approximations. In the worst case, the number of data
points resulting from a point or sphere query is in the order
of N, which means that the complexity of the algorithm is
similar to the complexity of the correct algorithm. For real
data distributions, we therefore developed other heuristics
for determining the relevant points. A heuristic which pro-
vides good results for real data is to use a constant number
of points ( ), namely the  nearest neighbor points
in all directions and the  points which have the small-
est deviation from the orthogonal axes in all directions. For
this heuristic, the complexity of the linear programming al-
gorithm becomes  since the number of considered
points is constant . In our experiments, the aver-
age performance of this algorithm turned out to be rather
good. Figure 3 presents the insertion algorithm including
our optimized algorithms for determining the NN-cells. We
name the four possibilities for determining the data points
which are used in the linear programming as follows:

Correct (all N points are considered)
Point (all points of which the rectangle in the index con-
tains the point)
Sphere (all points of which the rectangle in the index in-
tersects the sphere)
NN-Direction (2d NN-points in all directions and 2d
points with smallest deviation from the orthogonal axes)

In figure 4, we show the results of the experimental
comparison. Figure 4a shows the performance (time need-
ed to calculate the approximations) which directly corre-
sponds to the insertion time and figure 4b shows the quality
of the linear programming (overlap of the approximations)
depending on the dimensionality d of the data.As expected,
independent from the strategy used for determining the
points, the time needed to compute the approximations in-
creases with the dimension and the quality of the approxi-
mations decreases with the dimension (i.e., the overlap of
the approximations increases). Note that the most accurate
algorithm (Correct) has the poorest performance and that

the least accurate algorithm (NN-Direction) has the best
performance. Obviously, there is a trade-off between index
creation and query execution time. One may choose to
spend more time in creating the index and save time in ex-
ecuting the query or save time in creating the index and
spend more time in executing the query. Note, however,
that the determination of the approximations is only done
once at index creation time whereas at query execution
time, only a point query on the index has to be performed.

To obtain an evaluation criterion which takes both —
accuracy and performance —into account, we may consid-
er the quality-to-performance ratio. In figure 5, we present
the four quality-to-performance curves. Note that for lower
dimensions (4 and 8) the Sphere algorithm provides the
best quality-to-performance ratio and for higher dimen-
sions (12 and 16), the NN-Direction algorithm. 

For the correctness of our approach, it is important that
the use of the three optimized algorithms (Point, Sphere,

4 d⋅ 2 d⋅
2 d⋅

O d!( )
n 4 d⋅=( )

Figure 3: Insertion algorithm 

Tree::insert (DataPoint DP, Dim D; OptAlg Alg) 
{ SetOfPoints p_set;

MBR mbr;
switch(Alg)
{ case Point: 

p_set = PointQuery(DP); break;
case Sphere:

p_set = SphereQuery(DP); break;
case NN-Direction: 

for (i = 1; i != d; i++)
{ p_set->add(NNDimQuery(DP, i));
p_set->add(NNAxesQuery(DP, i));
}; break;

default:
p_set = AllPoints; 

}
for (i = 1; i != d; i++)
{ mbr[2*i-1] = LinOpt(DP, p_set, i, left);

mbr[2*i] = LinOpt(DP, p_set, i, right);
}
insert(mbr);

}

Figure 5: Quality-to-performance ratio of the four algorithms
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NN-Direction) to determine the approximations do not in-
duce false dismissals. In the following lemma, we show
that the approximations determined by our algorithms may
only be larger than the correct approximations, which im-
plies that a point query on an index created by our three op-
timized algorithms provides a superset of the results ob-
tained from the same point query on an index that is created
using the correct approximations. Lemma 1 is used later in
Lemma 2 to show the overall correctness of our approach.

Lemma 1 (Correctness of Optimized Algorithms)

For an arbitrary point set DB, , the following ob-
servation holds:

:

.

Proof. The correct approximation  of a
point P is an MBR approximation . Each
of the  and   results from a linear program-
ming using  constraints. To show Lemma 1, we have
to show that the approximation

 resulting from any of the
other algorithms provides a possibly larger MBR, i.e.

Without loss of generality, we consider an arbitrary
point P and an arbitrary dimension j. All following consid-

eration analogously apply to all other points and dimen-
sions. Let us now consider the simplex algorithm which is
used to determine the  and . The principle idea of the
revised simplex method is to determine the corner of the
polyhedra of valid solutions, which is optimal according to
the optimization function. The only difference between the
correct algorithm and the Point, Sphere and NN-Direction
algorithms is that the number of constraints used by the op-
timized algorithms is a subset of the constraints of the cor-
rect algorithm. As a result, the polyhedra of valid solutions
of the correct algorithm  is contained in the poly-
hedra of valid solution for any of the optimized algorithms

. Due to the main theorem of linear programming
theory, the  and  have to be corner points of the poly-
hedra and therefore, from  follows that

 and . q.e.d.
Until now, we have only dealt with the case of a static

database which is obviously not realistic for real databases.
Our algorithms, however, also work for the dynamic case.
We only have to dynamically update the approximations of
the NN-cells which are affected by the update operation. In
case of an insertion operation, we even do not need to find
all NN-cells since the existing NN-cells may only become
smaller by an insertion. We are therefore able to use a
sphere query with the new point as center and update all
NN-cells that are intersected by the sphere. For deletions
and modifications, efficient algorithms to dynamically up-
date the NN-cells have been proposed by Roos [Roo 91].
His dynamic algorithms to calculate the NN-cells may be
applied to our approach to obtain sufficiently efficient so-
lutions for the dynamic case.

3 Indexing the Solution Space

One problem of our approach as introduced so far is
that the overlap of the approximations rapidly increases
with the dimension even for the correct approximations (cf.
figure 4b). A direct result of the increasing overlap is that
the query processing time is also increasing with the di-
mension. In this section, we introduce a solution for this
problem, which reduces the overlap and is based on a de-
composition technique. The concept of decomposing ob-
jects to improve the query processing has originally been
proposed in [KHS 91] [SK 93] for improving the query
processing in geographical databases. The decompositions
proposed in [KHS 91] are based on decomposing the ob-
jects into triangles, trapezoids, convex polyhedra, and com-
binations (heterogeneous decompositions). None of those
decompositions, however, is directly applicable to the
high-dimensional case. In the following, we are going to
examine the specific properties of our high-dimensional
NN-cells and we then use those properties to define an ad-
equate decomposition.
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Let us first recall our example provided in figure 2c
and d, showing a regular multidimensional uniform data
distribution. As already mentioned, using our approach to
index the resulting approximations is optimal since the
NN-cells coincide with the MBRs. Consequently, our ap-
proach accesses only one data page during the nearest
neighbor search because every query point is located in ex-
actly one candidate approximation which is identical to the
corresponding voronoi cell.

Unfortunately — with few exceptions — real multidi-
mensional data do not correspond to a perfect multidimen-
sional uniform distribution. In most cases, the data is closer
to a high-dimensional sparse distribution. The reason is
that the high-dimensional space cannot be filled complete-
ly and clusters are likely to occur. As indicated in figure 2e
and f, the MBR approximations of the NN-cells induce a
high degree of overlap for sparse data. The problem is that
the volume of the approximations is by far larger than the
volume of the NN-cells. For a sparsely populated high-di-
mensional space, the volume may even become as high as

 in the worst case, which means that we have to ac-
cess all of the database even for a simple point query. What
is required is a decomposition which minimizes the volume
of the approximations. We are therefore looking for a de-
composition which provides the minimum volume among
all possible decompositions. In the following, we formally
define the terms decomposition and optimal decomposi-
tion.

Definition 4. (Decomposition, Optimal Decomposition)
A decomposition of a NN-diagram consisting of NN-cells

  is a partitioning of each of the cells into
k partitions  such that

.

The decomposition is called optimal iff

 is minimal.

Determining the optimal decomposition requires ex-
amining all possible decompositions, which is prohibitive-
ly expensive. We therefore use a heuristic which provides
good results especially for real high-dimensional data dis-
tributions. Our heuristic is based on two observations: The
first observation is that for high-dimensional data, it is not
possible to decompose the NN-cells in all dimensions since
this would result in a high number of MBR approxima-
tions, which is exponential in the number of dimensions.
The second observation is that we obtain the smallest vol-

ume if we decompose the NN-cells in those dimensions, in
which the NN-cells are most oblique. Many algorithms
could be used, and one possibility is to choose the maxi-
mum of all shortest diagonals. Figure 6 provides an exam-
ple: We show the approximations of a NN-cell (cf.

figure 6a) after decomposing the NN-cell in y-direction (cf.
figure 6b) and in z-direction (cf. figure 6c). In the example,
we use a decomposition into two partitions (k = 2). The de-
composition in the more oblique dimension (z-direction)
provides a lower overall volume of the approximations and
therefore also a much lower overlap. The idea of our de-
composition approximations is to determine the most ob-
lique dimensions and to use a simple linear decomposition
in those dimension. In the following, we assume that we
want to decompose the NN-cells in the  most oblique di-
mensions . Without loss of generality, we assume
that the  most oblique dimensions are the first  dimen-
sions . The NN-cells are decomposed in each of
those dimensions. The number of partitions used for each
of the dimensions is chosen depending on their oblique-
ness. If the dimensions  are sorted with an de-
creasing obliqueness, the number of partitions used in each
of the dimensions  is also decreasing

. The resulting total number of partitions (k) is

.

For practical purposes, k has to be rather small 
since otherwise the number of index entries becomes very
large. If the  are assumed to be constant, then for

 the  has to be chosen as 2, for  the 

N DS⋅

NNCj j 1…N=( )
DCj1 … DCjk, ,{ }

 j 1…N{ }:  NNCj∈∀ DCji

i 1=

k

∪=     ∧
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Figure 6: Decompositions of NN-cells and
their approximations
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has to be chosen as 3, for  the  can be at most 4,
and for  the  may be less or equal to 10. Let us now
formally define our MBR decomposition:

Definition 5. (MBR Decomposition)
Let the minimum bounding (hyper-)rectangle

 be the MBR approximation
 of the NN-cell . Then, the decom-

position the NN-cell  is defined as the set
 with

 

The   are defined as

where the   are determined se-
quentially as the maximum values such that finally

.

Our definition of an MBR decomposition fulfills the
properties of decompositions as defined in Definition 4.
The completeness property is guaranteed since

and therefore,

.

The disjointedness of the  is guaranteed since the
 are defined as disjoint (hyper-)rectangles and there-

fore, the  are also disjoint.
In the following, we show the correctness of our ap-

proach, i.e. our approach does not induce false dismissals.
The correctness includes the proof that the use of approxi-
mations and the use of decompositions do not exclude the
correct solution.

Lemma 2 (Correctness of our Approach)

Our approach does not induce false dismissals, i.e. for an
arbitrary point set DB, , a point query on an index
containing the approximations of the decomposed
NN-cells  provides a result set

 containing the nearest neighbor NN.

Proof. To show the correctness of our approach, we have to
show that the following three steps do not induce false dis-
missals:

1. Usage of approximations of the NN-cells.
2. Usage of the optimized algorithms for determining

the NN-cells.
3. Usage of decomposition of the NN-cells.

The correctness of the first step is easy to show: Since
, the result set RS of a point query

contains at least the correct NN-cell and therefore the usage
of approximations does not induce false dismissals. The
correctness of the second step has already been shown in
Lemma 1. The correctness of the third step can be shown as
follows: According to Definition 4,

and from , it follows that

and therefore

.

Since all approximations of the decomposed NN-cells
 are in the index, the result set RS of a point

query contains at least the correct NN-cell and, therefore,
the usage of our decomposition of the NN-cells does not in-
duce false dismissals. q.e.d.

4 Experimental Evaluation

To show the practical relevance of our approach, we
performed an extensive experimental evaluation of the
NN-cell approach and compared it to the R*-tree
[BKSS 90] as well to as the X-tree [BKK 96]. All experi-
mental results presented in this sections are computed on an
HP720 workstation with 48 MBytes of main memory and
several GBytes of secondary storage. All programs have
been implemented in C++. The test data used for the exper-
iments are real point data consisting of Fourier points in
high-dimensional space (d = 8) and synthetic data consist-
ing of uniformly distributed points in high-dimensional
space (d = 4, 6, 8, 10, 12, 14, 16). The block size used for
our experiments is 4 KBytes, and all index structures were
allowed to use the same amount of cache. For a realistic
evaluation, we used very large amounts of data in our ex-
periments.
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First, we evaluated the NN-cell approach on synthetic
databases with varying dimensionality. For the experi-
ments presented in figure 7, we used 10,000 uniformly dis-
tributed data points of dimensionality d = 4 to d = 16.
Figure 7 shows the total search time of the NN-cell ap-
proach and of a classic NN-search on the R*-tree and the
X-tree. As expected, the search time increases with grow-

ing dimension. For lower dimensions, the total search time
of NN-cell approach and R*-tree as well as X-tree is com-
parable but for higher dimensions, the NN-cell approach is
much faster than both, the R*-tree and the X-tree. In
figure 8, we show the speed-up of the NN-cell approach
over the R*-tree which is increasing to more than 325% for
d = 16. The high speed-up factors are caused by the fact
that the R*-tree needs to access most of the directory and
data pages, while the NN-cell approach takes advantage of
the precalculation of the solution space. In figure 9, we
show a more detailed comparison, namely the time needed
for accessing the pages and the time needed for processing

the queries. It turned out that the CPU-time and the page
accesses of the NN-cell approach are both better than those
of the R*-tree whereas in comparison with the X-tree, only
the CPU-time is better. This effect may be explained by the
fact that on the one side, the X-tree uses an overlap-free
split strategy which minimizes the overlap in the directory
and thereby reduces the number of page accesses. On the
other side, however, the X-tree has to perform a more CPU-
time consuming NN-query while the NN-cell approach
only performs a simple point query. Note that in contrast to
many other database operations, the total search time of
NN-queries is not dominated by the number of page access-
es since the nearest neighbor algorithm requires sorting the
nodes according to the min-max distance; and therefore,
the NN-cell approach provides a better total search time
than the X-tree. 

In our next series of experiments, we compared the
NN-cell approach with the R*-tree and the X-tree depend-
ing on the size of the database (i.e., the number of tuples).
In figure 10, we show the total search time for d=10 de-
pending on the size of the database which varied between
N=5,000 and N=20,000. Again, the NN-cell approach per-
formed significantly better than the R*-tree and the X-tree,
and shows a logarithmic behavior in the number of data-
base tuples. 
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Since one may argue that synthetic databases with uni-
formly distributed data are not realistic in high-dimension-
al space, we also used real data in our experiments. We had
access to a databases containing high-dimensional Fourier
points. Since the X-tree turned out to be consistently better
than the R*-tree in our experiments, we only compared the
NN-cell approach to the X-tree. The results of our experi-
ments (cf. figure 11) show again a significant improvement

of the NN-cell approach over the X-tree (speed-up of up to
425%). Comparing the page accesses and CPU-time need-
ed for the Fourier database (cf. figure 12) revealed that the
NN-cell approach now performed better in both categories,
which is due to the fact that the approximations of the
NN-cells turned out to be better than the approximations
for the uniformly distributed data. 

In a last experiment, we evaluated the impact of de-
composing the approximations (cf. section 3). For our
comparison, we used the most exact approximation algo-
rithm for determining the approximations (Correct). As a
measure for the quality of the approximations with and

without decomposition, again we used the average overlap
of approximations which directly corresponds to the query
performance. Figure 13 shows the results of our compari-
son which clearly reveals a significant improvement over
the Correct algorithm for determining the approximations,
which in addition increases with the dimensionality. Note
that the quality improvement over the optimized algo-
rithms (Point, Sphere, NN-Direction) is even higher.  

5 Conclusions

In this paper, we proposed a new technique for effi-
cient nearest neighbor search in a set of high-dimensional
points. Our technique is based on the precomputation of the
solution space of any arbitrary nearest-neighbor search.
This corresponds to the computation of the voronoi cells of
the data points. Since voronoi cells may become rather
complex when going to higher dimensions, we presented a
new algorithm for the approximation of high-dimensional
voronoi cells using a set of minimum bounding (hyper-)
rectangles. Although our technique is based on a precom-
putation of the solution space, it is dynamic, i.e. it supports
insertions of new data points.

We finally showed in an experimental evaluation that
our technique is efficient for various kinds of data and
clearly outperforms the state of the art nearest-neighbor al-
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gorithms. In our experiments, we obtained a significant re-
duction of the search time, up to a factor of 4. Our future
research interests are focussed on the application of our
technique to k-nearest neighbor search.
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Figure 13: Effect of decomposing the NN-cells


