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Abstract

In the past a good number of rotamer libraries have been published, which allow a
deeper understanding of the conformational behaviour of amino acid residues in pro-
teins. Since the number of available high resolution X-ray protein structures has grown
significantly over the last years, a more comprehensive analysis of the conformational
behaviour is possible today. In this paper, we present a method to compile a new class
of rotamer libraries for detecting interesting relationships between residue conforma-
tions and their sequential context in proteins. The method is based on a new algorithm
for clustering residue conformations. To demonstrate the effectivity of our method we
apply our algorithm to a library consisting of all 8000 tripetid fragments formed by the
20 native amino acids. The analysis shows some very interesting new results, namely
that some specific tripeptid fragments show some unexpected conformation of residues
instead of the highly preferred conformation. In the neighborhood of two asparagin
residues, for example, threonin avoids the conformation which is most likely to occur
otherwise. The new insights obtained by the analysis are important in understanding
the formation and prevention of secondary structure elements and will consequently be
crucial for improving the state-of-the-art of protein folding.
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1 Introduction

In the recent, years the number of proteins stored in the PDB (Protein Data
Bank) has grown significantly. Because of the technical progress a good num-
ber of high-resolution X-ray structures of proteins became available. Statistical
methods have been applied to the PDB to extract knowledge about the confor-
mational behavior of amino acid residues. Amino acid side chain conformations
have been studied, for example, by Chandrasekaran, Ramachandran 1970; Cody
et al. 1973, James, Sielecki 1983; Ponder, Richards 1987. These studies resulted



in side chain rotamer libraries, which consist of a list of diskrete conformations
having a weight which corresponds to their frequencey in the PDB. Since the PDB
contains a multitude of high-resolution structures, it was also possible to deter-
mine rotamer preferences depending on the backbone conformation. Based on
this idea, a number of weak correlations of rotamer distributions and secondary
structures have been found [Janin et al. 1978]; [McGregor et al. 1987); [Sutcliffe
et al. 1987); [Schrauber et al. 1993]. Recently, a backbone dependent side chain
rotamer library has been presented by Dunbrack, Karplus 1994; Dunbrack, Co-
hen 1997. The effectivity of the backbone dependent rotamer libraries has been
shown by Dunbrack, Karplus 1993; Bower et al. 1997 for homlogy modelling and
by Kuszewski et al. 1996 for NMR and X-ray structure refinement.

Although the idea of using rotamer libraries has already been applied success-
fully in the past, until now only a small fraction of its potential has been revealed.
The backbone dependent side chain rotamer library mentioned above, for exam-
ple, only uses 132 out of the about 2000 proteins with a resolution < 2A, which
are available in the PDB. To be able to better understand tertiary structures, it
is highly desirable to compile comprehensive rotamer libraries which are based
on all protein structures available in the PDB. Using such a rotamer library, for
instance, one would be able to determine how the conformation of an amino acid
residue (in particular that of a side chain) in a protein depends on its neighbours
in the sequence. To find and understand such relationships, a new method is
required which is able to deal with large amounts of residue conformations and
to classify them effectively. Our new method presented in this paper is based
on a cluster analysis in the conformation space (cf. section 2). The basic idea
is to model the conformation of amino acid residues or small peptide fragments
as points in the multidimensional dihedral angle space. The cluster algorithms
then determines clusters by assigning an influence function to each data point,
by summing up all influence functions to determine the overall density function,
and by finding the maxima of the overall density function using a gradient-based
hill-climbing procedure (cf. section 3). The method is used to compile a new
class of rotamer libraries which allows new insights into interesting dependencies
between the 3D-structure of small peptide chain fragments and their sequential
context. In section 5, we evaluate the effectivity and efficiency of our new ap-
proach and provide some interesting results showing, for example, that in the
neighborhood of two asparagin residues, threonin avoids the conformation which
is highly preferred otherwise. Note that our new method is generally applicable
to arbitrary protein fragments. In this paper, however, we restrict ourselves to
the evaluation and analysis of tripeptid conformations.



2 General Idea

In the backbone dependent rotamer library developed by Dunbrack, Cohen 1997
for each residue type a probabiltiy distribution of the side chain angle y; is
calulated for each node on an equidistant grid in the 2D (¢, ¢)-space. The distri-
butions of x», x3 and x4 only depend on the previous side chain dihedral angle.
For detecting more global relationships this method becomes inefficent since the
size of the grid grows exponentially in the number of considered angles. Another
problem arises if one is interested in the probability distribution of more than one
angle. Using Bayesian statistics, it is difficult to derive combined distributions of
two or more angles.

The conformation of amino acid residues or small peptide fragments can also
be described by data points in a multidimensional dihedral angle space. The ap-
proach we are using discretisizes the multidimensional angle space corresponding
to the observed data distribution by clustering the data in the dihedral angle
space. More formally, this can be described as follows.

Given is a set of protein sequences P. A sequence p € P is denoted as a string
of linked amino acid residues a from the set of natural amino acids A:

peEP p=aay...,a, a; €Ai=1,... 1L

In our approach, we do not directly use the real tertiary structure since the map-
ping of the 3D coordinates of the structure to dihedral angles basically contains
all relevant information about the protein structure and is much easier to handle.
For clear notations, we introduce the projection of the 3D atom coordinates of a
protein p € P to a sequence of vectors of dihedral angles as:

p € P, D(p) = 51,52,...5, 5, € [—180,180)% i =1,...,1

with d; being the number of dihedral angles for the residue a;. For example, d;
is 3 for a; = G (glycin) and d; = 7 for a; = A (argenin). The components of a
vector s; are

§: = (</5>1/Jaw) 7dz:3 )
' (¢>¢aw>X13"'aXdi—3) ,3Sdz§7

We use the dihedral angles of one residue as the smallest unit for detecting re-
lationships. Note that one can easily modify the structure of the data by, for
example, grouping the dihedral angles.

To produce the rotamer library for detecting relation ships between the 3D-
stucture of a residue and in its sequential context two steps have to be performed.

Step 1 For all different residues do:
Determine all conformations of the residue in the protein structures
of P and discretisize the conformational angle space according to the
observed data distribution by using a cluster algorithm which identifies
highly populated areas in the multidimensional dihedral angle space.
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Step 2 For all residues in the protein sequences, replace the dihedral angle vec-
tor with the cluster-id of that vector and based on the resulting data,
build frequency tables for all different residue fragments of fixed length
by counting the occurences of all fragments which correspond to the
same sequence of cluster-ids.

In the resulting frequency tables, we obtain significant information about de-
pendencies between the residues in a given sequential neighbourhood and the
preference for a certain conformational structure. Note that most of these cor-
relations can only be detected if the sequential context is considered. In the
following, we discuss the most important step of our approach, namely building
the frequency tables by clustering the dihedral angle space, in more detail.

3 Cluster Analysis in the Dihedral Angle Space

In the clustering step, the densely populated areas in the conformational space
of each of the 20 natural amino acid residues have to be identified. This can
be done separately for each of the residues. As the first step of the clustering
algorithm, the source data for the cluster analysis of a residue a € A is determined
by collecting all conformations of a, which occur in the protein conformations in
P. In addition to the residue conformation, the protein name and the position
of the residue in the protein chain are stored. With this additional information
it is possible to retrieve the sequential context of a residue conformation after
the cluster analysis. The considered set of proteins P contains all proteins from

the PDB, which have resolutions of the X-Ray structure of < 9A. With this
condition, P contains about 2000 proteins. From this set of proteins, we get a
conformational data set for each residue with a size between 48.000 (for alanin)
and 9000 (for tyrosin). In order to get a good number of classified tripeptid
conformations for each of the 8000 possible tripeptid fragments, we used the
complete data sets in the cluster analysis.

The task of the cluster algorithm is to group the objects from the given data
sets into smaller, homogeneous, and meaningful subsets which are the clusters.
In our case, the objects are conformations of one residue type described by a
vector of dihedral angles. To formally define the term homogeneous, we need an
appropriate distance measure on the objects. In case of dihedral angle vectors,
it is rather straight-forward to extend the Euclidian distance to measure the

shortest path of transformation between two residue conformations. This can be
defined as

4 | — il i — ;| <180
z,y € [—180,180)%, dist(z,y) = Z{\x yil*, i — vl <
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The impact of this distance measure is the wrap-around at the borders. The
effect is shown in Figure 1 where the shaded area diplays a two-dimensional
sphere around the the point (—180, —180).
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Figure 1: Effect of the Warp-Around

After defining the distance measure, we next have to define an adequate notion
of clusters. Since the definition of clusters largely depends on the data and the
application, we first tried to get a visual impression of the structure of clusters in
our application. For this purpose, we used the Ramachandran-Plot of the actual
conformation set, which is a projection to the (¢, )-plane. Figure 2 shows the
(¢, 1)-plot of glycine conformations as an example. Note that the plot is only a
projection of the high-dimensional dihedral angle space to the two-dimensional
display space, which results in loosing some of the information. Nevertheless, the
plot reveals some important properties of the clustering in our data set.

Psi

Phi

Figure 2: Ramachandran-Plot for Glycine

The Figure shows densely populated areas which are separated by nearly empty
space. It is well known from biochemistry that preferred areas exist in the con-
formation space, and the clusters in the plot correspond to preferred secondary
structure elements in which the residues are involved. Two further observations
can be derived from the plots: First, the shape of the clusters is not fixed to
certain shapes (e.g., spherical shapes) and second, the space between the clus-
ters is filled with a significant number of outliers. Outliers are points which do
not belong to any cluster. The observations lead to restrictive requirements for
the cluster algorithm: The algorithm should be able to find clusters of arbitrary
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shape, handle a variable amount of outliers, and efficiently deal with a large mul-
tidimensional data set (up to 50.000 points). From the wide range of cluster
algorithms which have been proposed in the literature ([Duda, Hart 1975|, [Ester
et al. 1996], [Zhang et al. 1996)), only few algorithms fulfill these requirements
and none of them works efficiently on large amounts of multidimensional data.
A new approach which has been recently proposed by the authors in the context
of knowledge discovery in multimedia databases [Hinneburg, Keim 1998] can be
adapted to meet the requirements.

In the following, we briefly introduce the algorithm and describe the adapta-
tion to the problem of clustering the conformation space of amino acid recidues.
The basic idea of the DENCLUE (DENsity based CLUstEring) algorithm is to
determine clusters based on the overall density of the data in the data space.
The overall density function is defined as the sum of influences, which the data
points are assumed to have in the data space. The influence of a data point is
usually modeled by a gaussian influence function. Definition 1 introduces a den-
sity function with gaussian influence functions (cf. [Schnell 1964) or [Fukunaga,
Hostler 1975) for a similar notion of density functions).

Def. 1: (Density Function)

The density function is defined as the sum of the gaussian influence functions
of all data points. Given N conformations decribed by a set of dihedral angle
vectors D = {z1,... ,xx} C [~180,180)% the density function is defined as

FP(@) = Y e

The paramter o controls how far the influence of a data point is propagated into
the data space. Figure 3 shows an example of a Ramachandran plot and the
overall density induced from it for different values for o.

Psi

Phi phi phi

(a) Data Set (b) o0 =40 (¢c) o =10
Figure 3: Example for Density Functions

For our definitin of clusters, the notion of a density attractor is needed. Informaly
a density attractor is a local maximum of the density function. To determine a



density attractor, we need the gradient which is given for a density function
according to Definition 1 by the following equation:
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Def. 2: (Density Attractor)

A point z* € [—180,180)¢ is called a density attractor, if z* is a local maximum
of the density function fP.

A point x € [-180,180)¢ is density attracted to a density attractor z*, if Ik €
N : dist(z*, 2%) < € with

. V £P (71
IV (=1l
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The second part of definition 2 implies that a point x is density attracted to z*,
if the hill climbing procedure which is started at z and which is guided by the
gradient leads into a e-sphere around the density attractor z*. Figure 4 shows an
example of density attractors in a one-dimensional space.

Density
X

Da;ta ébéce
Figure 4: Example of Density Attractors

In real data sets, not all density attractors are significant in terms of a cluster be-
cause there may be a significant number of outliers. Outliers are points which are
not influenced by ”"many” other data points. We can use an additional parameter
¢ to formalize the "many”.

Def. 3: (Cluster, Outlier)

A cluster (wrt o,€) for a density attractor z* is a subset C' C D, with z € C
being density attracted by z* and f”(z*) > £. Points z € D are called outliers
if they are density attracted by a local maximum z}, with fP(z}) < &.

The DENCLUE algorithm has two important parameters, namely ¢ and £. The
parameter o describes the influence of one data point on its neighbourhood.
There are two extremas 0,4, and Opmin- If 0 > 0mee the influence is propagated
so far that the density function f” has only one density attractor. The other
extrem is 0 < o,,;, in which case the Gaussian functions become little peaks and
each data point becomes a density attractor of its own. Choosing a good o can
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be done by considering different 0 and determining the largest intervall between
Omaz and 0,,in, where the number of density attractors is almost constant. The
clustering resulting from that approach can be seen as naturally adapted to the
data set. In Figure 5 we provide an example for the number of density attractors
m(o) depending on o.

mo)

Figure 5: Number of Density Attractors Depending on o

The second parameter & describes the minimum density level above which a den-
sity attractor is considered significant. A good choice for £ helps the algorithm to
focus on the densely populated areas and to save computational time. Note that
the border of a cluster may be in regions with a density lower than £&. Important
is that the density attractor z* has fP(z*) > £. The details of the theoreti-
cal foundations and implementation of the DENCLUE algorithm are beyond the
scope of this paper and are described in [Hinneburg, Keim 1998).

4 Building Fragmant Rotamer Libraries

With the results derived by the cluster analysis, we are now able to build the
desired frequency table. The result from the cluster analysis is that each residue
conformation in the protein structures p € P has become part in exactly one
cluster (the outliers are grouped into a special cluster). Formally, we introduce
a mapping function C from the residue conformations into the set of cluster
identificators C'I. This function provides the identificator of the cluster for a
given residue conformation.

pEP, D(p)=s1,...,5,Vje{l,... I} : C(s;) = ¢j,c; € CI
For a more convenient notation, we write

p € P, C(D(p) =C(s1),...,C(s1,) =¢C1,--.,0

P

The fragment rotamer libraries can be complied based on the mapping C for
different fragment sizes without recomputing the cluster analysis in step 1. Let
be ¢t > 1 the fragment size for the desired library. The fragment rotamer library L
can be considered as a relation, where each of the 20° possible residue fragments
of length ¢ correspond to a finite set of t-tupels of cluster-ids. The set A* is the



set of the fragments with length ¢ based on the set A of the 20 natural amino
acid residues.

v e A L(z) = {[(cl,...,c}),hY], ..., [(cF, ... c=), h=]}

Each tupel s matches to h* > 1 occurences of the corresponding fragment and its

mapping given by the ¢-tupel in the protein structures p € P. The frequency h

of each tupel is provided in L as a statistical information about the preference

of the corresponding fragment for the conformation space corresponding to the

t-tupel of cluster-ids. The significance of such perferences depends strongly on
le .

the total number Y A® of occurences of the examined fragment z € A! in the
i=1

protein structures p € P.

5 Results

In this section, we focus on the application of the cluster algorithm to conforma-
tional data of amino acid residues and provide as an exapmle a rotamer library
for tripeptids. The algorithm was applied to each of the 20 conformation data
sets for different o (o7 = 10, 0o = 20, 03 = 30 and o4 = 40). To get a first im-
pression of the results, we ploted the number of density attractors (not clusters)
depending on o. Figure 6 shows three typical cases which occured in our anal-
ysis: (a) there exits an interval where m(o) is almost constant (b) m(o) slowly
decreases (c) m(o) rapidly decreases (note the scaling).

100 —————— 5000 — 5000
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T L ) L ) L
g 60 g 3000 g 3000
2 2 °
K K <
£ 40t ] £ 2000 | ] £ 2000 |
20 1 1000 - \ 1 1000
ol ol ol ==
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
sigma sigma sigma
(a) cystein (b) asparagin acid (c) argenin

Figure 6: Number of Density Attractors Depending on o

Residues with a behaviour such as the one presented in case (c) of Figure 6 are
mostly hydrophil and have long side chains decribed by x1,...,xs4. Hydrophil
residues often occur at the surface of a protein and the side chain reaches into
the water where no stable conformation is adapted. As a consequence, the data
points are uniformly distributed in these dimensions and no preference can be
detected. It seems to be more realistic to neglect x3 and x4 and postulate them
as freely rotatable. Figure 7 shows the effect of neglecting x3 and x4 on the



number of density attractors. From Figure 7 it is clear that the assumption that
X3 andy, can rotate freely leads to more realistic clusterings - a result which is
also supported by [Dunbrack, Cohen 1997).
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sigma sigma sigma
(a) argenin (b) argenin without x4 (c) argenin without x4, X3

Figure 7: Number of Density Attractors Depending on o

With these results we can build the mapping function C' from the residue con-
formations to the cluster-ids we formaly inroduced in section 4. A cluster iden-
tificator consists of the residue name and the cluster number. The cluster are
numbered in the order of decreasing size. In Table 1, we provide an example of
a clustering and in Table 2 an example of the mapping for the clusterings with
o = 40.

Table 1: Cluster for Threonin (not complete), o = 40

e cluster (T,1); size: 8904/35212, 25.29%
center: ¢ = —107.1 © =129.2 w=1787 x5 = —58.1

e cluster (T,2); size: 8303/35212, 23.58%
center: ¢ =—-113.4 ¥ =160.6 w=1784 x; =613

e cluster (T,3) size: 8293/35212, 23.55%
center: ¢ =-88.3 ¢Y=-145 w=-179.6 x1 =59.6

Table 2: Example of the Mapping Function C

AC 0] () w X1 X2 AC Cluster Id
S 8254 -23.18 179.45 -36.58 S (S,3)
C -101.64 22.62 176.75 -46.90 C (C,1)
T -83.39 159.20 179.77 53.62 T (T,2)
H 6344 1712 -17877 -4842 -7251 ¢ H (H, out)
F -112.55 140.25 0.66 174.56 -82.41 F (F, out)
P -90.11 831 -177.86 37.66 -23.44 P (P2
G 5472 -24.68 -179.60 G (G3)
N  -89.86 2.58 -178.75 89.54 131.35 N (N, out)
L -61.54 -43.83 -179.54 -76.65 -172.62 L (L,1)
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We stored these mappings and scaned them through to count the frequency of
different mappings for each tripeptid fragment occuring in the protein sequences.
Due to the large number of possible tripeptid fragments (8000), the set of pro-
teins P also provides a very large number of occuring tripeptid fragments. In our
example, P consists of about 2000 proteins and the number of occuring tripep-
tid fragments has been about 240000. In the derived frequency table, for each
tripeptid fragment a list of the different tripels of cluster-ids and their freqencies
are stored. Table 3 shows a portion of the frequency table for o = 40.

Table 3: Part of the Frequency Table for o = 40

(N5 (T,8) (N,1) 1
N (N,1) (T3 (N1) 3 (N,1)  (T4) (N2) 1
(Es’gN) EITH:;% fsﬁ ? (N2 (T3) (N9 3 (N2) (T,3) (N,2) 1
(N 2) (T 3) (N 9) 109 (Nal) (T=3) (Nal) 2 (N,3) (T,4) (N,3) 1
(N,4) (T,Q) (N75) 13 (N,4) (T,3) N7 2 (N,2)  (1,3) (N,7) 1
(N,5) (T,5) (N,3) 12 (N51) (Ta4) (N73) 2 (N,4) (T,5) (N,S) 1
(N,l) (T,4) (N,l) 11 (N,1) (T4)  (N)3) 1 (N2) (T,3) (N2) 1
(N,3) (T,4) (N,l) 7 (N’3) (T53) (Nal) 1 (Nal) (Ta3) (Na3) 1
(N7) (T.3) (N4) 6 (N5)  (T,1)  (N,2) 1 (N3) (T,3) (N3) 1
(N,3) (T,4) (N=3) s (Njout) (T,2) (N,1) 1 (N5) (T,2) (N,3) 1
(N5 (T5)  (N5) 4 (N6) (T3 (N1) 1 ASN THR GLU
(N4)  (T5) (N5) 3 N2 (T3 (N,1) 1 (N4) (T,2) (E4) 6

Table 3 contains a full list of cluster-id tripels for the tripeptid fragment N T' N.
Two observations can be derived from the table. First, there is a significant pref-
erence for the first tripel, and second, cluster 1 for threonin (T,1) occurs only once
in the list. Cluster 1 is the cluster with the largest size in the clustering for the
middle amino acid residue threonin and can be considered a good preference for
threonin in the conformation space. The list shows, that in the neighborhood of
two asparagin residues threonin avoids the usually perferred conformation space
of cluster 1.

This kind of frecquency tables, which can be considered a new class of rotamer
liberaries, provides an easy way of detecting of a-priori unknown relationships.
The next steps in our further research will be the development of an adequate
visualisation of such libraries, allowing scientists a fast exploration of the libraries
and enabling them to find rules which are hidden in the data set. Further in-
vestigations are intended to explore possible applications to the protein folding
problem.

6 Conclusions

We showed that our new method for cluster analyses of amino acid residues oc-
curring in X-ray structures of proteins taking into account backbone as well as
side chain dihedral angles is appropriate for classification of preferred conforma-
tions of amino acids. Based on our new method, a new type of rotamer libraries
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for tripeptide fragments has been developed. This library has been shown to be
useful in finding unknown dependencies between amino acid residue sequences
and the favored or disfavored formation of 3D-structures in small peptide frag-
ments. Expected results of a careful analysis of all of the 8000 tripeptides con-
formations will allow contributions to a better understanding of protein folding
phenomenons which are not yet completely understood. The described method
allows a general application in the investigation of conformational preferences of
peptide fragments in proteins since, in principle, it can be extended to work also
on larger fragments.
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