
Optimal Grid-Clustering: Towards Breaking the Curse of

Dimensionality in High-Dimensional Clustering

Alexander Hinneburg
hinneburg@informatik.uni-halle.de

Daniel A. Keim
keim@informatik.uni-halle.de

Institute of Computer Science, University of Halle
Kurt-Mothes-Str.1, 06120 Halle (Saale), Germany

Abstract

Many applications require the clustering of large amounts

of high-dimensional data. Most clustering algorithms,

however, do not work e�ectively and e�ciently in high-

dimensional space, which is due to the so-called "curse of

dimensionality". In addition, the high-dimensional data

often contains a signi�cant amount of noise which causes

additional e�ectiveness problems. In this paper, we review

and compare the existing algorithms for clustering high-

dimensional data and show the impact of the curse of di-

mensionality on their e�ectiveness and e�ciency. The com-

parison reveals that condensation-based approaches (such

as BIRCH or STING) are the most promising candidates

for achieving the necessary e�ciency, but it also shows

that basically all condensation-based approaches have se-

vere weaknesses with respect to their e�ectiveness in high-

dimensional space. To overcome these problems, we de-

velop a new clustering technique called OptiGrid which

is based on constructing an optimal grid-partitioning of

the data. The optimal grid-partitioning is determined by

calculating the best partitioning hyperplanes for each di-

mension (if such a partitioning exists) using certain pro-

jections of the data. The advantages of our new approach

are (1) it has a �rm mathematical basis (2) it is by far

more e�ective than existing clustering algorithms for high-

dimensional data (3) it is very e�cient even for large data

sets of high dimensionality. To demonstrate the e�ective-

ness and e�ciency of our new approach, we perform a series

of experiments on a number of di�erent data sets including

real data sets from CAD and molecular biology. A com-

parison with one of the best known algorithms (BIRCH)

shows the superiority of our new approach.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,

Edinburgh, Scotland, 1999.

1 Introduction

Because of the fast technological progress, the amount
of data which is stored in databases increases very fast.
This is true for traditional relational databases but
also for databases of complex 2D and 3D multimedia
data such as image, CAD, geographic, and molecular
biology data. It is obvious that relational databases
can be seen as high-dimensional databases (the at-
tributes correspond to the dimensions of the data set),
but it is also true for multimedia data which - for an
e�cient retrieval - is usually transformed into high-
dimensional feature vectors such as color histograms
[SH94], shape descriptors [Jag91, MG95], Fourier vec-
tors [WW80], and text descriptors [Kuk92]. In many
of the mentioned applications, the databases are very
large and consist of millions of data objects with sev-
eral tens to a few hundreds of dimensions.

Automated clustering in high-dimensional
databases is an important problem and there
are a number of di�erent clustering algorithms which
are applicable to high-dimensional data. The most
prominent representatives are partitioning algorithms
such as CLARANS [NH94], hierarchical clustering
algorithms, and locality-based clustering algorithms
such as (G)DBSCAN [EKSX96, EKSX97] and DB-
CLASD [XEKS98]. The basic idea of partitioning

algorithms is to construct a partition of the database
into k clusters which are represented by the gravity of
the cluster (k-means) or by one representative object
of the cluster (k-medoid). Each object is assigned
to the closest cluster. A well-known partitioning
algorithm is CLARANS which uses a randomised and
bounded search strategy to improve the performance.
Hierarchical clustering algorithms decompose the
database into several levels of partitionings which
are usually represented by a dendrogram - a tree
which splits the database recursively into smaller
subsets. The dendrogram can be created top-down
(divisive) or bottom-up (agglomerative). Although
hierarchical clustering algorithms can be very e�ective
in knowledge discovery, the costs of creating the

dendrograms is prohibitively expensive for large data
sets since the algorithms are usually at least quadratic
in the number of data objects. More e�cient are
locality-based clustering algorithms since they usually
group neighboring data elements into clusters based
on local conditions and therefore allow the clustering
to be performed in one scan of the database. DB-
SCAN, for example, uses a density-based notion of
clusters and allows the discovery of arbitrarily shaped
clusters. The basic idea is that for each point of a
cluster the density of data points in the neighborhood
has to exceed some threshold. DBCLASD also works
locality-based but in contrast to DBSCAN assumes
that the points inside of the clusters are randomly
distributed, allowing DBCLASD to work without any
input parameters.

A problem is that most approaches are not designed
for a clustering of high-dimensional data and there-
fore, the performance of existing algorithms degener-
ates rapidly with increasing dimension. To improve
the e�ciency, optimised clustering techniques have
been proposed. Examples include Grid-based cluster-
ing [Sch96], BIRCH [ZRL96] which is based on the
Cluster-Feature-tree, STING which uses a quadtree-
like structure containing additional statistical informa-
tion [WYM97], and DENCLUE which uses a regular
grid to improve the e�ciency [HK98]. Unfortunately,
the curse of dimensionality also has a severe impact
on the e�ectiveness of the resulting clustering. So far,
this e�ect has not been examined thoroughly for high-
dimensional data but a detailed comparison shows se-
vere problems in e�ectiveness (cf. section 2), especially
in the presence of noise. In our comparison, we analyse
the impact of the dimensionality on the e�ectiveness
and e�ciency of a number of well-known and compet-
itive clustering algorithms. We show that they either
su�er from a severe breakdown in e�ciency which is
at least true for all index-based methods or have se-
vere e�ectiveness problems which is basically true for
all other methods. The experiments show that even
for simple data sets (e.g. a data set with two clusters
given as normal distributions and a little bit of noise)
basically none of the fast algorithms guarantees to �nd
the correct clustering.

From our analysis, it gets clear that only
condensation-based approaches (such as BIRCH or
DENCLUE) can provide the necessary e�ciency for
clustering large data sets. To better understand the se-
vere e�ectiveness problems of the existing approaches,
we examine the impact of high dimensionality on
condensation-based approaches, especially grid-based
approaches (cf. section 3). The discussion in section 3
reveals the source of the problems, namely the inad-
equate partitioning of the data in the clustering pro-
cess. In our new approach, we therefore try to �nd a
better partitioning of the data. The basic idea of our
new approach presented in section 4 is to use contract-

ing projections of the data to determine the optimal
cutting (hyper-)planes for partitioning the data. If
no good partitioning plane exist in some dimensions,
we do not partition the data set in those dimensions.
Our strategy of using a data-dependent partitioning
of the data avoids the e�ectiveness problems of the
existing approaches and guarantees that all clusters
are found by the algorithm (even for high noise lev-
els), while still retaining the e�ciency of a grid-based
approach. By using the highly-populated grid cells
based on the optimal partitioning of the data, we are
able to e�ciently determine the clusters. A detailed
evaluation 5 shows the advantages of our approach.
We show theoretically that our approach guarantees
to �nd all center-de�ned clusters (which roughly spo-
ken correspond to clusters generated by a normal dis-
tribution). We con�rm the e�ectiveness lemma by an
extensive experimental evaluation on a wide range of
synthetic and real data sets, showing the superior ef-
fectiveness of our new approach. In addition to the
e�ectiveness, we also examine the e�ciency, showing
that our approach is competitive with the fastest ex-
isting algorithms (BIRCH) and (in some cases) even
outperforms BIRCH by up to a factor of about 2.

2 Clustering of High-Dimensional
Data

In this section, we discuss and compare the most
e�cient and e�ective available clustering algorithms
and examine their potential for clustering large high-
dimensional data sets. We show the impact of the
curseof dimensionality and reveal severe e�ciency and
e�ectiveness problems of the existing approaches.

2.1 Related Approaches

The most e�cient clustering algorithms for low-
dimensional data are based on some type of hierar-
chical data structure. The data structures are either
based on a hierarchical partitioning of the data or a
hierarchical partitioning of the space.

All techniques which are based on partitioning the
data such as R-trees do not work e�ciently due to
the performance degeneration of R-tree-based index
structures in high-dimensional space. This is true
for algorithms such as DBSCAN [EKSX96] which
has an almost quadratic time complexity for high-
dimensional data if the R*-tree-based implementation
is used. Even if a special indexing techniques for high-
dimensional data is used, all approaches which deter-
mine the clustering based on near(est) neighbor in-
formation do not work e�ectively since the near(est)
neighbors do not contain su�cient information about
the density of the data in high-dimensional space (cf.
section 3.2), which means that algorithms such as the
k-means or DBSCAN algorithm do not work e�ectively
on high-dimensional data.

A more e�cient approach is BIRCH (Balanced It-
erative Reducing and Clustering using Hierarchies)
which uses a data partitioning according to the ex-
pected cluster structure of the data [ZRL96]. BIRCH
uses a hierarchical data structure called CF-tree (Clus-
ter Feature Tree) which is a balanced tree for storing
the clustering features. BIRCH tries to build the best
possible clustering using the given limited (memory)
resources. The idea of BIRCH is store similar data
items in the node of the CF-tree and if the algorithm
runs short of main memory, similar data items in the
nodes of the CF-tree are condensed. BIRCH uses sev-
eral heuristics to �nd the clusters and to distinguish
the clusters from noise. Due to the speci�c notion of
similarity used to determine the data items to be con-
densed BIRCH is only able to �nd spherical clusters.
Still, BIRCH is one of the most e�cient algorithms and
needs only one scan of the the database (time com-
plexity O(n)), which is also true for high-dimensional
data.

On low-dimensional data, space partitioning meth-
ods which in general use a grid-based approach such
as STING (STatistical INformation Grid) [WYM97]
and WaveCluster [SCZ98] are of similar e�ciency (the
time complexity is O(n)), but better e�ectiveness than
BIRCH (especially for noisy data and arbitrary-shape
clusters) [SCZ98]. The basic idea of STING is to di-
vide the data space into rectangular cells and store
statistical parameters (such as mean, variance, etc.) of
the objects in the cells. This information can then be
used to e�ciently determine the clusters. WaveClus-
ter[SCZ98] is a wavelet-based approach which also uses
a regular grid for an e�cient clustering. The basic
idea is map the data onto a multi-dimensional grid,
apply a wavelet transformation to the grid cells, and
then determine dense regions in the transformed do-
main by searching for connected components. The ad-
vantage of using the wavelet transformation is that it
automatically provides a multiresolutions representa-
tion of the data grid which allows an e�cient determi-
nation of the clusters. Both, STING and WaveClus-
ter have only been designed for low-dimensional data.
There is no straight-forward extention to the high-
dimensional case. In WaveCluster, for example, the
number of grid cells grows exponentially in the num-
ber of dimensions (d) and determining the connected
components becomes prohibitively expensive due to
the large number of neighboring cells. An approach
which works better for the high-dimensional case is
the DENCLUE approach [HK98]. The basic idea is to
model the overall point density analytically as the sum
of inuence functions of the data points. Clusters can
then be identi�ed by determining density-attractors
and clusters of arbitrary shape can be easily described
by a simple equation based on the overall density func-
tion. DENCLUE has been shown to be a generaliza-
tion of a number of other clustering algorithm such

as k-means and DBSCAN [HK99], and it also gener-
alizes the STING and WaveCluster approaches. To
work e�ciently on high-dimensional data, DENCLUE
uses a grid-based approach but only stores the grid-
cells which contain data points. For an e�cient clus-
tering, DENCLUE connects all neighboring populated
grid cells of a highly-populated grid cell.

2.2 Comparing the E�ectiveness

Unfortunately, for high-dimensional data none of the
approaches discussed so far is fully e�ective. In the fol-
lowing preliminary experimental evaluation, we briey
show that none of the existing approaches is able to
�nd all clusters on high-dimensional data. In the ex-
perimental comparison, we restrict ourselves to the
most e�cient and e�ective algorithms which all use
some kind of aggregated (or condensed) information
being stored in either a cluster-tree (in case of BIRCH)
or a grid (in case of STING, WaveCluster, and DEN-
CLUE). Since all of them have in common that they
condense the available information in one way or the
other, in the following we call them condensation-
based approaches.

For the comparison with respect to high-
dimensional data, it is su�cient to focus on BIRCH
and DENCLUE since DENCLUE generalizes STING
and WaveCluster and is directly applicable to high-
dimensional data. Both DENCLUE and BIRCH have
a similar time complexity, in this preliminary compar-
ison we focus on their e�ectiveness (for a detailed com-
parison, the reader is referred to section 5). To show
the e�ectiveness problems of the existing approaches
on high-dimensional data, we use synthetic data sets
consisting of a number of clusters de�ned by a normal
distribution with the centers being randomly placed in
the data space.

In the �rst experiment (cf. Figure 1), we analyse
the percentage of clusters depending on the percent-
age of noise in the data set. Since at this point, we
are mainly interested in getting more insight into the
problems of clustering high-dimensional data, a suf-
�cient measure of the e�ectiveness is the percentage
of correctly found clusters. Note that BIRCH is very
sensitive to noise for higher dimensions for the real-
istic situation that the data is read in a random or-
der. If however the data points belonging to clusters
are known a-priori (which is not a realistic assump-
tion), the cluster points can be read �rst and in this
case, BIRCH provides a much better e�ectiveness since
the CF-tree does not degenerate as much. If the clus-
ters are inserted �rst, BIRCH provides about the same
e�ectiveness as grid-based approaches such as DEN-
CLUE. The curves show how critical the dependency
on the insertion order becomes for higher dimensional
data. Grid-based approaches are in general not sensi-
tive to the insertion order.

0

20

40

60

80

100

120

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 c

or
r.

 fo
un

d
C

lu
st

er
s

Percentage of Noise

Birch, d= 5
Denclue, d= 5

0

20

40

60

80

100

120

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 c

or
r.

 fo
un

d
C

lu
st

er
s

Percentage of Noise

Birch, d=20
Denclue, d=20

(a) Dimension 5 (b) Dimension 20

Figure 1:
Comparison of DENCLUE and Birch on noisy data

The second experiment shows the average percent-
age of clusters found for 30 data sets with di�erent
positions of the clusters. Figure 2 clearly shows that
for high dimensional data, even grid-based approaches
such as DENCLUE are not able to detect a signi�-
cant percentage of the clusters, which means that even
DENCLUE does not work fully e�ective. In the next
section, we try to provide a deeper understanding of
these e�ects and discuss the reasons for the e�ective-
ness problems.

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45

P
er

ce
nt

ag
e

of
 c

or
r.

 fo
un

d
C

lu
st

er
s

Dimensions

Denclue avr
Denclue max
Denclue min

Figure 2: E�ects of grid based Clustering (DENCLUE)

2.3 Discovering Noise in High-Dimensional
Data

Noise is one of the fundamental problems in cluster-
ing large data sets. In high-dimensional data sets, the
problem becomes even more severe. In this subsec-
tion, we therefore discuss the general problem of noise
in high-dimensional data sets and show that it is im-
possible to determine clusters in data sets with noise
correctly in linear time (in the high-dimensional case).

Lemma 1 (Complexity of Clustering)
The worst case time complexity for a correct clustering

of high-dimensional data with noise is superlinear.

Idea of the Proof:
Without loss of generality, we assume that we have
O(n) noise in the database (e.g., 10% noise). In the
worst case, we read all the noise in the beginning which
means that we can not obtain any clustering in read-
ing that data. However, it is also impossible to tell
that the data we have already read does not belong to
a cluster. Therefore, in reading the remaining points
we have to search for similar points among those noise
points. The search for similar points among the noise
points can not be done in constant time (O(1)) since

we have O(n) noise points and in high-dimensional
space, an O(1) access to similar data in the worst case
(based on techniques such as hashing or histograms)
is not possible even for random noise (cf. section 3 for
more details on this fact). The overall time complexity
is therefore superlinear. �

The lemma implies that the clustering of data in
high-dimensional data sets with noise is an inherently
non-linear problem. Therefore, any algorithm with lin-
ear time complexity such as BIRCH can not cluster
noisy data correctly. Before we introduce our algo-
rithm, in the following we provide more insight into
the e�ects and problems of high-dimensional cluster-
ing.

3 Grid-based Clustering of High-
dimensional Spaces

In the previous section, we have shown that grid-based
approaches perform well with respect to e�ciency and
e�ectiveness. In this section, we discuss the impact
of the "curse of dimensionality" on grid-based cluster-
ing in more detail. After some basic considerations
de�ning clustering and a very general notion of mul-
tidimensional grids, we discuss the e�ects of di�erent
high-dimensional data distributions and the resulting
problems in clustering the data.

3.1 Basic Considerations

We start with a well known and widely accepted def-
inition of clustering (cf. [HK98]). For the de�nition,
we need a density function which is determined based
on kernel density estimation.

De�nition 2 (Density Function)
Let D be a set of n d-dimensional points and h be the

smoothness level. Then, the density function f̂D

based on the kernel density estimator K is de�ned as:

f̂D(x) =
1

nh

nX
i=1

K

�
x� xi

h

�

Kernel density estimation provides a powerful
framework for �nding clusters in large data sets. In
the statistics literature, various kernels K have been
proposed. Examples are square wave functions or
Gaussian functions. A detailed introduction into ker-
nel density estimation is beyond the scope of this pa-
per and can be found in [Sil86],[Sco92]. According to
[HK98], clusters can now be de�ned as the maxima of
the density function, which are above a certain noise
level �.

De�nition 3 (Center-De�ned Cluster)
A center-de�ned cluster for a maximum x� of the den-

sity function f̂D is the subset C � D, with x 2 C

being density-attracted by x� and f̂D(x�) � �. Points

x 2 D are called outliers if they are density-attracted

by a local maximum x�o with f̂D(x�o) < �.

According to this de�nition, each local maximum of
the density function which is above the noise level �
becomes a cluster of its own and consists of all points
which are density-attracted by the maximum. The
notion of density-attraction is de�ned by the gradient
of the density function. The de�nition can be extended
to clusters which are de�ned by multiple maxima and
can approximate arbitrarily-shaped clusters.

De�nition 4 (Multicenter-De�ned Cluster)
A multicenter-de�ned cluster for a set of maxima X is

the subset C � D, where

1. 8x 2 C 9x� 2 X : fDB (x�) � �, x is density-

attracted to x� and

2. 8x�
1
; x�

2
2 X : 9 a path P � F d

from x�
1
to x�

2

above noise level �.

As already shown in the previous section, grid-based
approaches provide an e�cient way to determine the
clusters. In grid-based approaches, all data points
which fall into the same grid cell are aggregated and
treated as one object. In the low-dimensional case,
the grid can be easily stored as an array which allows
a very e�cient access time of O(1). In case of a high-
dimensional grid, the number of grid cells grows expo-
nentially in the number of dimensions d which makes
it impossible to store the grid as a multi-dimensional
array. Since the number of data points does not grow
exponentially, most the grid cells are empty and do
not need to be stored explicitly, but it is su�cient to
store the populated cells. The number of populated
cells is bounded by the number of non-identical data
points.

Since we are interested in arbitrary (non-
equidistant, irregular) grids, we need the notion of a
cutting plane which is a (d-1)-dimensional hyperplane
cutting the data space into the grid cells.

De�nition 5 (Cutting Plane)

A cutting plane is a (d � 1)-dimensional hyper-

plane consisting of all points y which ful�l the equa-

tion
Pd

i=1 wiyi = 1. The cutting plane partitions R
d

into two half spaces. The decision function H(x) de-

termines the half space, where a point x 2 R is located:

H(x) =

8<
:
1 ;

dP
i=1

wixi � 1

0 ; else

Now, we are able to de�ne a general notion of arbi-
trary (non-equidistant, irregular) grids. Since the grid
can not be stored explicitly in high-dimensional space,
we need a coding function c which assigns a label to
all points belonging to the same grid cell. The data

space S as well as the grid cells are de�ned as right
semi-opened intervals.

De�nition 6 (Multidimensional Grid)

A multidimensional grid G for the data space S
is de�ned by a set H = fH1; : : : ; Hkg of (d � 1)-
dimensional cutting planes. The coding function cG :
S �! N is de�ned as follows:

x 2 S; c(x) =

kX
i=1

2i �Hi(x):

x2

1xHH H

H

H

H

1 2

3

0

4

5

0 1 3 7

8 9 11 15

24 25 27 31

56 57 59 63 x2

1xH0H1 H2

H3

H4

0

1

2

3
7

9 11
15

25 27 31

(a) regular (b) irregular

Figure 3: Examples of 2-dimensional Grids

Figure 3 shows two examples of two-dimensional
grids. The grid in �gure 3a shows a non-equidistant
regular (axes-parallel cutting planes) grid and 3b
shows a non-equidistant irregular (arbitrary cutting
planes) grid. The grid cells are labeled with value de-
termined by the coding function according to de�ni-
tion 6. In general, the complexity of the coding func-
tion is O(k �d). In case of a grid based on axes parallel
hyperplanes, the complexity of the coding function be-
comes O(k).

3.2 E�ects of Di�erent Data Distributions

In this section, we discuss the properties of di�erent
data distributions for an increasing number of dimen-
sions. Let us �rst consider uniformly distributed data.
It is well-known, that uniform distributions are very
unlikely in high-dimensional space. From a statisti-
cal point of view, it is even impossible to determine
a uniform distribution in high-dimensional space a-
posteriori. The reason is that there is no possibility
to have enough data points to verify the data distri-
bution by a statistical test with su�cient signi�cance.
Assume we want to characterize the distribution of a
50-dimensional data space by an grid-based histogram
and we split each dimension only once at the center.
The resulting space is cut into 250 � 1014 cells. If
we generate one billion data points by a uniform ran-
dom data generator, we get about 1012 cells �lled with
one data point which is about one percent of the cells.
Since the grid is based on a very coarse partitioning
(one cutting plane per dimension), it is impossible to
determine a data distribution based on one percent
of the cells. The available information could justify a
number of di�erent distributions including a uniform
distribution. Statistically, the number of data points

is not high enough to determine the distribution of
the data. The problem is that the number of data
points can not grow exponentially with the dimension,
and therefore, in high-dimensional space it is generally
impossible to determine the distribution of the data
with su�cient statistical signi�cance. (The only thing
which can be veri�ed easily is that the projections onto
the dimensions follow a uniform distribution.) As a re-
sult of the sparsely �lled space, it is very unlikely that
data points are nearer to each other than the average
distance between data points, and as a consequence,
the di�erence between the distance to the nearest and
the farthest neighbor of a data point goes to zero in
high-dimensional space (see [BGRS99] for a recent the-
oretical proof of this fact).

Now let us look at normally distributed data. A
normal distribution is characterized by the center
point (expected value) and the standard deviation (�).
The distance of the data points to the expected point
follows a Gaussian curve but the direction from the
expected point is randomly chosen without any pref-
erence. An important observation is that the number
of possible directions from a point grows exponentially
in the number of dimensions. As a result, the distance
among the normally distributed data points increases
with the number of dimensions although the distance
to the center point still follows the same distribution.
If we consider the density function of the data set, we
�nd that it has a maximum at the center point al-
though there may be no data points very close to the
center point. This results from the fact that it is likely
that the data points slightly vary in the value for one
dimension but still the single point densities add up
to the maximal density at the center point. The ef-
fect that in high dimensional spaces the point density
can be high in empty areas is called the empty space

phenomenon [Sco92].

Figure 4:
Example Scenario for a Normal Distribution, d = 3

To illustrate this e�ect, let us consider normally dis-
tributed data points in [0; 1]d with (0:5; : : : ; 0:5) as
center point and a grid based on splitting at 0:5 in
each dimension. The number of directions from the
center point now directly corresponds to the number
of grid cells which is exponential in d (2d). As a con-
sequence, most data points will fall into separate grid
cells (Figure 4 shows an example scenario for d = 3).
In high dimensions, it is unlikely that there are any
points in the center and that populated cell are adja-
cent to each other on a high-dimensional hyperplane

which is again an explanation of the high inter-point
distances.

0

20000

40000

60000

80000

100000

120000

0 10 20 30 40 50 60

#(
po

pu
la

te
d

gr
id

 c
el

ls
)

Dimensions

Uniform
Normal

Normal,20% Noise

Figure 5:

#(Populated Grid Cells) for Di�erent Data Distributions

To show the e�ects of high-dimensional spaces on
grid-based clustering approaches, we performed some
interesting experiments based on using a simple grid
and counting the number of populated grid cells con-
taining di�erent numbers of points. The resulting �g-
ures show the e�ects of di�erent data distributions and
allow interesting comparisons of the distributions. Fig-
ure 5 shows the total number of populated cells (con-
taining at least one data point) depending on the di-
mensionality. In the experiments, we used three data
sets consisting of 100000 data points generated by a
uniform distribution (since it is impossible to generate
uniform distributions in high-dimensional space we use
a uniformly generated distribution of which the pro-
jections are at least uniformly distributed), a normal
distribution containing 5 clusters with � = 0:1 and
centers uniformly distributed in [0; 1)d and a combina-
tion of both (20% of the data is uniformly distributed).
Based on the considerations discussed above, it is clear
that for the uniformly distributed data as many cells
as possible are populated which is the number of avail-
able cells (for d � 20) and the number of data points
(for d � 25). For normally distributed data, the num-
ber of populated data points is always lower but still
increases for higher dimensions due to the many direc-
tions the points may vary from the center point (which
can not be seen in the �gure). The third data set is
a combination of the other two distributions and con-
verges against the percentage of uniformly distributed
data points (20000 data points in the example).

Class 2

Uniform
Normal

Normal, 5 Cluster, 30% Noise
Real Data

140000

120000

100000

80000

60000

40000

20000

#(
po

pu
la

te
d

gr
id

 c
el

ls
)

Class 3Class 1

Figure 6:

#(Populated Grid Cells) for Molecular Biology Data

It is now interesting to use the same approach for a
better understanding of real data sets. It can be used
to analyse and classify real data sets by assessing how
clustered the data is and how much noise it contains.
Figure 6 shows the results for a real data set from a
molecular biology application. The data consists of
about 100000 19-dimensional feature vectors describ-
ing peptides in a dihedral angle space. In �gure 6, we
show the number of data points which fall into three
di�erent classes of grid cells. Class one accounts for
all data points which fall into grid cells containing a
small number of data points (less than 24), class two
those which contain a medium number of data points
(between 24 and 28 data points), and class three those
which contain a large number of data points (more
than 28 data points). We show the resulting curves for
uniformly distributed data, normally distributed data,
a combination of both, and the peptide data. Figure
6 clearly shows that the peptide data corresponds nei-
ther to uniformly nor to normally distributed data, but
can be approximated most closely by a combination of
both (with about 40% of noise). Figure 6 clearly shows
that the peptide data sets contains a signi�cant por-
tion of noise (corresponding to a uniform distribution)
but also contains clear clusters (corresponding to the
normal distribution). Since real data sets may contain
additional structure such as dependencies between di-
mensions or extended clusters of arbitrary shape, the
classi�cation based on counting the grid cells of the dif-
ferent population levels can not be used to detect all
properties of the data and completely classify real data
sets. However, as shown in Figure 6 the approach is
powerful and allows to provide interesting insights into
the properties of the data (e.g., percentage of noise and
clusters). In examining other real data sets, we found
that real high-dimensional data is usually highly clus-
tered but mostly also contains a signi�cant amount of
noise.

3.3 Problems of Grid-based Clustering

A general problem of clustering in high-dimensional
spaces arises from the fact that the cluster centers can
not be as easily identi�ed (by a large number of almost
identical data points) as in lower dimensional cases. In
grid-based approaches it is possible that clusters are
split by some of the (d-1) dimensional cutting planes
and the data points of the cluster are spread over many
grid cells. Let us use a simple example to exemplify
this situation. For simpli�cation, we use a grid where
each dimension is split only once. In general, such a
grid is de�ned by d (d � 1)-dimensional hyperplanes
which cut the space into 2d cells. All cutting planes
are parallel to (d� 1) coordinate axes. By cutting the
space into cells, the naturally neighborhood between
the data points gets lost. A worst case scenario could
be the following case. Assume the data points are in
[0; 1]d and each dimension is split at 0:5. The data

points lie on a hyper sphere with small radius � >
0 round the split point (0:5; 0:5; : : : ; 0:5). For d >
20, most of the points would be in separate grid cells
despite the fact that they form a cluster. Note that
there are 2d cells adjacent to the split point. Figure
4 tries to show this situation of a worst case scenario
for a three-dimensional data set. In high-dimensional
data, this situation is likely to occur and this is the
reason for the e�ectiveness problems of DENCLUE (cf.
Figure 2).

An approach to handle the e�ect is to connect ad-
jacent grid cells and treat the connected cells as one
object. A naive approach is to test all possible neigh-
boring cells of a populated cell whether they are also
populated. This approach however is prohibitively ex-
pensive in high-dimensional spaces because of the ex-
ponential number of adjacent neighbor grid cells. If
a grid with only one split per dimension is used, all
grid cells are adjacent to each other and the number
of connections becomes quadratic in the number of
grid cells, even if only the O(n) populated grid cells
are considered. In case of �ner grids, the number
of neighboring cells which have to be connected de-
creases but at the same time, the probability that cut-
ting planes hit cluster centers increases. As a conse-
quence, any approach which considers the connections
for handling the e�ect of splitted clusters will not work
e�ciently on large databases, and therefore another so-
lution guaranteeing the e�ectiveness while preserving
the e�ciency is necessary for an e�ective clustering of
high-dimensional data.

4 E�cient and E�ective Clustering in
High-dimensional Spaces

In this section, we propose a new approach to high-
dimensional clustering which is e�cient as well as
e�ective and combines the advantages of previous
approaches (e.g, BIRCH, WaveCluster, STING, and
DENCLUE) with a guaranteed high e�ectiveness even
for large amounts of noise. In the last section, we
discussed some disadvantages of grid-based clustering,
which are mainly caused by cutting planes which par-
tition clusters into a number of grid cells. Our new
algorithm avoids this problem by determining cutting
planes which do not partition clusters.
There are two desirable properties for good cutting
planes: First, cutting planes should partition the data
set in a region of low density (the density should be
at least low relative to the surrounding region) and
second, a cutting plane should discriminate clusters
as much as possible. The �rst constraint guarantees
that a cutting plane does not split a cluster, and the
second constraint makes sure that the cutting plane
contributed to �nding the clusters. Without the sec-
ond constraint, cutting planes are best placed at the
borders of the data space because of the minimal den-
sity there, but it is obvious that in that way clusters

can not be detected. Our algorithm incorporates both
constraints. Before we introduce the algorithm, in the
following we �rst provide some mathematical back-
ground on �nding regions of low density in the data
space which is the basis for our optimal grid partition-
ing and our algorithm OptiGrid.

4.1 Optimal Grid-Partioning

Finding the minima of the density function f̂D is a
di�cult problem. For determining the optimal cutting
plane, it is su�cient to have information on the density
on the cutting plane which has to be relatively low.
To e�ciently determines such cutting planes, we use
contracting projections of the data space.

De�nition 7 (Contracting Projection)
A contracting projection for a given d-dimensional

data space S and an appropriate metric k �k is a linear

transformation P de�ned on all points x 2 S

P (x) = Ax with kAk = max
y2S

�
kAyk
kyk

�
� 1 :

(a) general (b) contracting

Figure 7: General and Contracting Projections

Now we can proof a main lemma for the correctness
of our algorithm, which states that the density at a
point x0 in a contracting projection of the data is an
upper bound for the density on the plane, which is
orthogonal to the projection plane.

Lemma 8 (Upper Bound Property)

Let P (x) = Ax be a contracting projection, P (D) the

projection of the data set D, and f̂P (D)(x0) the density
for a point x0 2 P (S). Then,

8x 2 S with P (x) = x0 : f̂P (D)(x0) � f̂D(x) :

Proof: First, we show that the distance between
points becomes smaller by the contracting projection
P . According to the de�nition of contracting projec-
tions, for all x; y 2 S:

kP (x)�P (y)k = kA(x�y)k � kAk �kx�yk � kx�yk

The density function which we assume to be kernel
based depends monotonically on the distance of the

data points. Since the distance between the data
points becomes smaller, the density in the data space
S grows. �

The assumption that the density is kernel based is
not a real restriction. There are a number of proofs in
the statistical literature that non-kernel based density
estimation methods converge against a kernel based
method [Sco92]. Note that Lemma 8 is a generalization
of the Monotonicity Lemma in [AGG+98]. Based on
the preceeding lemma, we now de�ne an optimal grid-
partitioning.

De�nition 9 (Optimal Grid-Partioning)

For a given set of projections P = fP0; : : : ; Pkg and

a given density estimation model f̂(x), the optimal l
grid partitioning is de�ned by the l best separating
cutting planes. The projections of the cutting planes

have to separate signi�cant clusters in at least one of

the projections of P .

The term best separating heavily depends on the
considered application. In section 5 we discuss sev-
eral alternatives and provide an e�cient method for
normally distributed data with noise.

4.2 The OptiGrid Algorithm

With this de�nition of optimal grid-partitioning, we
are now able to describe our general algorithm for
high-dimensional data sets. The algorithm works re-
cursively. In each step, it partitions the actual data set
into a number of subsets if possible. The subsets which
contain at least one cluster are treated recursively. The
partitioning is done using a multidimensional grid de-
�ned by at most q cutting planes. Each cutting plane
is orthogonal to at least one projection. The point den-
sity at a cutting planes is bound by the density of the
orthogonal projection of the cutting plane in the pro-
jected space. The q cutting planes are chosen to have a
minimal point density. The recursion stops for a sub-
set if no good cutting plane can be found any more.
In our implementation this means that the density of
all possible cutting planes for the given projections is
above a given threshold.

OptiGrid(data set D; q; min cut score)

1. Determine a set of contracting projections P =

fP0; : : : ; Pkg

2. Calculate all projections of the data set D !
P0(D); : : : ; Pk(D)

3. Initialize a list of cutting planes BEST CUT ;,
CUT ;

4. FOR i=0 TO k DO
(a) CUT Determine best local cuts(Pi(D))

(b) CUT SCORE Score best local cuts(Pi(D))

(c) Insert all cutting planes with a score �
min cut score into BEST CUT

5. IF BEST CUT = ; THEN RETURN D as a cluster

6. Determine the q cutting planes with highest score
from BEST CUT and delete the rest

7. Construct a Multidimensional Grid G de�ned by the

cutting planes in BEST CUT and insert all data
points x 2 D into G

8. Determine clusters, i.e. determine the highly popu-

lated grid cells in G and add them to the set of cluster

C

9. Re�ne(C)

10. FOREACH Cluster Ci 2 C DO

OptiGrid(Ci; q;min cut score)

In step 4a of the algorithm, we need a function which
produces the best local cutting planes for a projec-
tion. In our implementation, we determine the best
local cutting planes for a projection by searching for
the leftmost and rightmost density maximum which
are above a certain noise level and for the q � 1 max-
ima in between. Then, it determines the points with a
minimal density in between the maxima. The position
of the minima determines the corresponding cutting
plane and the density at that point gives the quality
(score) of the cutting plane. The estimation of the
noise level can be done by visualizing the density dis-
tribution of the projection. Note that the determina-
tion of the q best local cutting planes depends on the
application. Note that our function for determining
the best local cutting planes adheres to the two con-
strains for cutting planes but additional criteria may
be useful.

Our algorithm as described so far is mainly designed
to detect center-de�ned clusters (cf. step 8 of the al-
gorithm). However, it can be easily extended to also
detect multicenter-de�ned clusters according to de�-
nition 4. The algorithm just has to evaluate the den-
sity between the center-de�ned clusters determined by
OptiGrid and link the clusters if the density is high
enough.

The algorithm is based on a set of projections. Any
contracting projection may be used. General projec-
tions allow for example the detection of linear depen-
dencies between dimensions. In cases of projections
P : Rd ! R

d0

; d0 � 3 an extension of the de�ni-
tions of multidimensional grid and cutting planes is
necessary to allow a partitioning of the space by poly-
hedrons. With such an extension, even quadratic and
cubic dependencies which are special kinds of arbitrary
shaped clusters may be detected. The projections can
be determined using algorithms for principal compo-
nent analysis, techniques such as FASTMAP [FL95]
or projection pursuit [Hub85]. It is also possible to
incorporate prior knowledge in that way.

4.3 Complexity

In this section, we provide a detailed complexity anal-
ysis and hints for an optimized implementation of the
OptiGrid algorithm. For the analysis, we assume that

the data set D contain N d�dimensional data points.
Frist, we analyse the complexity to the main steps.
The �rst step takes only constant time, because we
use a �xed set of projections. The number of projec-
tions k can be assumed to be in O(d). In the general
case, the calculation of all projections of the data set
D may take O(N � d � k), but the case of axes parallel
projections P : Rd ! R it is O(N � k).

The determination of the best local cutting planes
for a projection can be done based on 1-dimensional
histograms. The procedure takes time O(N). The
whole loop of step 4 runs in O(N � k).

The implemention of the multidimensional grid de-
pends on the number of cutting planes q and the avail-
able resources of memory and time. If the possible
number of grid cell nG, i.e nG = 2q, does not exceed
the size of the available memory, the grid can be im-
plemented as an array. The insertion time for all data
points is then O(N � q � d). If the number of potential
grid cells becomes to large, only the populated grid
cells can be stored. Note that this is only the case, if
the algorithm has found a high number of meaningful
cutting planes and therefore, this case only occurs if
the data sets consists of a high number of clusters. In
this case, a tree or hash based data structure is re-
quired for storing the grid cells. The insertion time
then becomes to O(N � q � d � I) where I is the time
to insert a data item into the data structure which is
bound by minq; logN . In case of axes parallel cutting
planes, the insertion time is O(N �q�I). The complexity
of step 7 dominates to complexity of the recursion.

Note that the number of recusions depends on the
data set and can be bounded by the number of clusters
#C. Since q is a constant of our algorithm and since
the number of clusters is a constant for a given data
set, the total complexity is between O(N �d) and O(d �
N � logN). In our experimental evaluation (cf. 5), it is
shown that the total complexity is slightly superlinear
as implied by our complexity lemma 1 in section 2.3.

5 Evaluation

In this section, �rst we provide a theoretical evalua-
tion of the e�ectiveness of our approach and then, we
demonstrate the e�ciency and e�ectiveness of Opti-
Grid using a variety of experiments based on synthetic
as well as real data sets.

5.1 Theoretical Evaluation of the E�ective-

ness

A main point in the OptiGrid approach is the choice
of the projections. The e�ectiveness of our approach
depends strongly on the set P of projections. In our
implementation, we use all projections d P : Rd ! R

to the d coordinate axes. The resulting cutting planes
are obviously axes parallel.

Let us now examine the discriminative power of axes
parallel cutting planes. Assume for that purpose two

clusters with same number of points. The data points
of both clusters follow an independent normal distri-
bution with standard deviation � = 1. The centers
of both clusters have a minimal distance of 2�. The
worst case for the discrimination by axes parallel cut-
ting planes is that the cluster centers are on a diagonal
of the data space and have minimal distance. Figure 8
shows an example for the 2-dimensional case and the
L1-metric. Under these conditions we can prove that
the error of partitioning the two clusters with axes
parallel cutting plane is limited by a small constant in
high-dimensional spaces.

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

Figure 8:
Worst case for partitioning Center-de�ned Clusters

Lemma 10 (Error-Bound)
Using the L1-metric, two d-dimensional center de�ned

clusters approximated by two hyper spheres with ra-

dius 1 can be partitioned by an axes parallel cutting

plane with at most (1=2)d+1 percent wrongly classi�ed

points.

Proof: According to the density of the projected
data, the optimal cutting plane is in middle between
the two clusters but axes parallel. Figure 8 shows
the worst case scenario for which we estimate the er-
ror. The two shaded regions in the picture mark the
wrongly classi�ed point sets. The two regions form a

d-dimensional hypercube with an edge length e =
p
d
2
.

The maximal error can be estimated by the fraction
of the volume of the clusters and the volume of the
wrongly classi�ed point sets.

errormax =
Vbad

Vcluster
=

(1=2 �
p
d)d

2(
p
d)d

= (1=2)d+1 :

The error bound for metrics Lp; p � 2 is lower than
the bound for the L1 metric. �

Note that in higher dimensions the error bound con-
verges against 0. An important aspect however is that
both clusters are assume to consist of the same number
of data points. The split algorithm tends to preserve
the more dense areas. In case of clusters with very
di�erent numbers of data points the algorithm splits
the smaller clusters more than the larger ones. In ex-
treme cases, the smaller clusters may then be rejected
as outliers. In such cases, after determining the large

clusters a reclustering of the data set without the large
clusters should be done. Because of the missing inu-
ence of the large clusters the smaller ones now becomes
more visible and will be correctly found.

An example for the �rst steps of partitioning a two-
dimensional data set (data set DS3 from BIRCH) is
provided in Figure 9. It is interesting to note that re-
gions containing large clusters are separated �rst. Al-
though not designed for low-dimensional data, Opti-
Grid still provides correct results on such data sets.

-20

0

20

40

60

80

100

120

-20 0 20 40 60 80 100 120

Figure 9:
The �rst determined cut planes of OptiGrid (q=1)

5.2 Experimental Evaluation of E�ectiveness
and E�ciency

In this section, we provide a detailed experimental
evaluation of the e�ectiveness and e�ciency of Opti-
Grid. We show that BIRCH is more e�ective and
even slightly more e�cient than the best previous ap-
proaches, namely BIRCH and DENCLUE.

0

20

40

60

80

100

120

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 c

or
r.

 fo
un

d
C

lu
st

er
s

Percentage of Noise

Birch, d= 5
Denclue, d= 5
OptiGrid, d= 5

(a) Dimension 5

0

20

40

60

80

100

120

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 c

or
r.

 fo
un

d
C

lu
st

er
s

Percentage of Noise

Birch, d=20
Denclue, d=20
OptiGrid, d=20

(b) Dimension 20

Figure 10: Dependency on the Noise Level

The �rst two experiments showing the e�ectiveness
of OptiGrid use the same data sets as used for show-
ing the problems of previous BIRCH and DENCLUE
in subsection 2.2. As indicated by the theoretical con-
siderations, OptiGrid provides a better e�ectiveness
than BIRCH and DENCLUE. Figure 10a shows the
percentage of correctly found clusters for d = 5 and
10b shows the same curves for d = 20. OptiGrid cor-
rectly determines all clusters in the data sets, even for
very large noise levels of up to 75%. Similar curves
result for d > 20.

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40 45

P
er

ce
nt

ag
e

of
 c

or
r.

 fo
un

d
C

lu
st

er
s

Dimensions

Denclue avr
OptiGrid avr

Figure 11: Dependency on the Dimensionality

The second experiments show the average percent-
age of correctly found clusters for data sets with dif-
ferent cluster centers (cf. �gure 2). Again, OptiGrid
is one hundred percent e�ective since it does not par-
titions clusters due to the optimal grid-partitioning al-
gorithm.

