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Abstract. Extraction of interesting knowledge from large spatial
databases is an important task in the development of spatial database
systems. Spatial data mining is the branch of data mining that deals
with spatial (location) data. Analyzing the huge amount (usually tera-
bytes) of spatial data obtained from large databases such as credit card
payments, telephone calls, environmental records, census demographics
etc. is, however, a very difficult task. Visual data mining applies human
visual perception to the exploration of large data sets. Presenting data
in an interactive, graphical form often fosters new insights, encourag-
ing the formation and validation of new hypotheses to the end of better
problem-solving and gaining deeper domain knowledge. In this paper we
give a short overview of visual data mining techniques, especially the
area of analyzing spatial data. We provide some examples for effective
visualizations of spatial data in important application areas such as con-
sumer analysis, e-mail traffic analysis, and census demographics.

Keywords: Information Visualization, Visual Data Mining, Visualiza-
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1 Visual Data Mining

Progress in technology allows today’s computer systems to store and exchange
amounts of data that until very recently were considered extraordinarily vast.
Almost all transactions of everyday life, such as purchases made with a credit
card, web pages visited or telephone calls made are recorded by computers. This
data is collected because it is a potential source of valuable information, pro-
viding a competitive advantage to its holders. The data is often automatically
recorded via sensors and monitoring systems. Government agencies also provide
a wealth of statistical information that can be applied to important problems
in public health and safety, combined with proprietary data. Even simple trans-
actions of every day life, such as paying by credit card or using the telephone,
are typically recorded by computers. Usually many parameters are recorded,
resulting in data with a high dimensionality. With today’s data management
systems, it is only possible to view quite small portions of this data. If the data
is presented textually, the amount of data that can be displayed is in the range
of some hundred data items, but this is like a drop in the ocean when dealing
with data sets containing millions of data items. Having no possibility to ade-
quately explore the large amounts of data that have been collected because of



their potential usefulness, the data becomes useless and the databases become
’Data Dumps’. Finding valuable details that reveal the structure hidden in the
data, however, is difficult.

1.1 Visual Exploration Paradigm

Visual Data Exploration usually follows a three step process: Overview first,
zoom and filter, and then details-on-demand (which has been called the Infor-
mation Seeking Mantra [35]). First, the user needs to get an overview of the data.
In the overview, the user identifies interesting patterns or groups in the data and
focuses on one or more of them. For analyzing these patterns, the user needs to
drill-down and access details of the data. Visualization technology may be used
for all three steps of the data exploration process. Visualization techniques are
useful for showing an overview of the data, allowing the user to identify inter-
esting subsets. In this step, it is important to keep the overview visualization
while focusing on the subset using another visualization. An alternative is to
distort the overview visualization in order to focus on the interesting subsets.
This can be performed by dedicating a larger percentage of the display to the in-
teresting subsets while decreasing screen space for uninteresting data. To further
explore the interesting subsets, the user needs a drill-down capability in order
to observe the details about the data. Note that visualization technology does
not only provide visualization techniques for all three steps but also bridges the
gaps between them.

1.2 Classification of Visual Data Mining Techniques

There are a number of well known techniques for visualizing large data sets, such
as x-y plots, line plots, and histograms. These techniques are useful for data ex-
ploration but are limited to relatively small and low dimensional data sets. Over
the last years, a large number of novel information visualization techniques have
been developed, allowing visualizations of multidimensional data sets without
inherent two- or three-dimensional semantics. Nice overviews of the approaches
can be found in a number of recent books [5] [32] [37] [42]. The techniques can
be classified based on three criteria [17] (see also figure 1):

– the data to be visualized
– the visualization technique
– and the interaction technique used

The data type to be visualized [35] may be one-dimensional data, such as
temporal (time-series) data, two-dimensional data, such as geographical maps,
multidimensional data, such as relational tables, text and hypertext, such as news
articles and web documents, hierarchies and graphs, such as telephone calls, and
algorithms and software.
The visualization technique used may be classified as: Standard 2D/3D dis-
plays, such as bar charts and x-y plots, Geometrically transformed displays, such



Fig. 1. Classification of visual data exploration techniques

as hyperbolic plane [40] and parallel coordinates [15], Icon-based displays, such
as chernoff faces [6] and stick figures [29] [30], Dense pixel displays, such as
the recursive pattern [2] and circle segments [3], and Stacked displays, such as
treemaps [16] [34] and dimensional stacking [41]. The third dimension of the clas-
sification is the interaction technique used. Interaction techniques allow users
to directly navigate and modify the visualizations, as well as select subsets of the
data for further operations. Examples include: Dynamic Projection, Interactive
Filtering, Interactive Zooming, Interactive Distortion, Interactive Linking and
Brushing. Note that the three dimensions of our classification - data type to be
visualized, visualization technique, and interaction technique - can be assumed
to be orthogonal. Orthogonality means that any of the visualization techniques
may be used in conjunction with any of the interaction techniques for any data
type. Note also that a specific system may be designed to support different data
types and that it may use a combination of visualization and interaction tech-
niques. More details can be found in [20].

2 Visualizing Spatial Data

Spatial data is different from other kinds of data in that spatial data describes
objects or phenomena with a specific location in the real world. Large spatial
data sets can be seen as a result of accumulating samples or readings of phenom-
ena in the real world while moving along two dimensions in space. In general,
spatial data sets are discrete samples of a continuous phenomenon. Nowadays,
there exist a large number of applications, in which it is important to analyze
relationships that involve geographic location. Examples include global climate



modeling (measurements such as temperature, rainfall, and wind-speed), en-
vironmental records, customer analysis, telephone calls, credit card payments,
and crime data. Because of this special characteristic, the visualization strategy
for spatial data is straightforward. We map the spatial attributes directly to
the two physical screen dimensions. The resulting visualization depends on the
spatial dimension or extent of the described phenomena and objects. Spatial
phenomena may be distinguished to according their spatial dimension or extent:

– point phenomena - have no spatial extent, can be termed zero-dimensional
and can be specified by a longitude and latitude coordinate pairs with a
statistical value z. Examples are census demographics, oil wells, and crime
data.

– line phenomena - have length, but essentially no width, can be termed
one-dimensional and can be specified by unclosed series of longitude and
latitude coordinate pairs for each phenomenon. Examples are large telecom-
munication networks, internet, and boundaries between countries.

– area phenomena - have both length and width, can be termed
two-dimensional and can be specified by series of longitude and latitude
coordinate pairs that completely enclose a region and a statistical value z
for each phenomenon. Examples are lakes, and political units such as states
or counties.

For each of the phenomena, several visualization approaches have been developed
over the last years. In the following, we provide an overview of interesting novel
visualization techniques in some of the most important application areas. More
details about spatial visualization and cartography can be found in [26] [27] [31]
[36].

2.1 Point Phenomena

The basic idea of visualizing spatial data which describes point phenomena is to
place a pixel where that phenomenon occurs. Point phenomena with statistical
values can be displayed as colored pixels. This simple visualization is called Dot
Map (see figure 2). Dot Maps can be an elegant medium for communicating a
wealth of information about the spatial relationships of spatial point phenom-
ena, in a compact, convenient and familiar format. However, when large spatial
data sets are drawn on a map, the problem of overlapping or overplotting of data
points arises in highly populated areas, while low-population areas are virtually
empty since spatial data are highly non-uniformly distributed in real world data
sets. Figure 2 shows the overlapping problem for the New York / New England
Area. Examples for such spatial data sets are credit card payments, telephone
calls, health statistics, environmental records, crime data and census demograph-
ics. Note that the analysis may involve multiple parameters that may be shown
on multiple maps. If all maps show the data in the same way, it may be pos-
sible to relate the parameters and detect local correlations, dependencies, and
other interesting patterns. There are several approaches to coping with dense
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Fig. 2. Dot Map of the 1999 USA Population - every pixel represents the spatial
location of people in the USA. Note that we have a overlapping of about 80 %.

spatial data already in common use [11]. One widely used method is a 2.5D
visualization showing data points aggregated up to map regions. This technique
is commercially available in systems such as VisualInsight’s In3D [1] and ESRI’s
ArcView [10]. An alternative that shows more detail is a visualization of indi-
vidual data points as bars according to their statistical value on a map. This
technique is embodied in systems such as SGI’s MineSet [14] and AT&T’s Swift
3D [18]. A problem here is that a large number of data points are plotted at the
same position, and therefore, only a small portion of the data is actually visible.
Moreover, due to occlusion in 3D, a significant fraction of the data may not be
visible unless the viewpoint is changed.



(a) 0:00 am (EST) (b) 6:00am (EST)

(c) 12:00pm (EST) (d) 6:00pm (EST)

Fig. 3. The figures display the U.S. Telephone Call Volume at four different times
during one day. The idea is to place the first data items at their correct position, and
then move overlapping data points to the nearby free position.

VisualPoints One approach that does not aggregate the data, but avoids over-
lap in the two-dimensional display, is the VisualPoints approach [21]. The idea
is to reposition pixels that would otherwise overlap. The basic idea of the repo-
sitioning algorithm is to recursively partition the data set into four subsets con-
taining the data points in equally-sized subregions. Since the data points may
not fit into the four equally size subregions, we have to determine new extents
of the four subregions (without changing the four subsets of data points) such
that the data points in each subset can be visualized in their corresponding sub-
region. For an efficient implementation, a quadtree-like data structure manages
the required information and supports the recursive partitioning process. The
partitioning process works as follows. Starting with the root of the quadtree, in
each step the data space is partitioned into four subregions. The partitioning is



made such that the area occupied by each of the subregions (in pixels) is larger
than the number of pixels belonging to the corresponding subregion. A problem
of VisualPoints is that in areas with high overlap, the repositioning depends on
the ordering of the points in the database. That is, the first data item found in
the database is placed at its correct position, and subsequent overlapping data
points are moved to nearby free positions, and so locally appear quasi-random in
their placement. Figure 3 presents four time steps of such visualizations, show-
ing the U.S. Telephone Call Volume within a 10 minute interval at the given
time. The time sequence clearly shows the development of the call volume over
time. The visualizations allow an intuitive understanding of the development
of the call volume, showing the wake-up from east to west, the drop down in
call volume at commuting and lunch time, etc. The visualizations show expected
patterns but also reveal unexpected patterns such as the locations of nation wide
call centers in the middle of the US (see figure 3(a)).

2.2 Line Phenomena

The basic idea to visualize spatial data describing linear phenomena is to rep-
resent linear phenomena as line segments between two end points. Today, Net-
work Maps are widely used. Some approaches only display the structure of
networks (usually modeled as graphs) to interpret and understand the general
behavior and structure of networks. The goal is to find a good geometric rep-
resentation of the network on a map. There are several approaches to visualize
networks and data on these networks. Eick and Wills [9] use functions such as
aggregation, hierarchical information, node position and linked displays for in-
vestigating large networks with hierarchies but without a natural layout. They
used color and shape for coding node information and color and line width for
coding link information. Researchers at NCSA [28] added 3D graphics to their
network maps to display animations of Internet traffic packets within the net-
work backbone. Becker, Eick and Wilks [4] describe a system called SeeNet,
which is motivated by statistical research in dynamic graphics. The basic idea
is to involve the human and let him/her interactively control the display to
focus on interesting patterns. They use two static network displays to visual-
ize the geographic relationships and a link matrix, which gives equal emphasis
to all network links. Another interesting system for visualizing large network
data is the AT&T’s SWIFT-3D System [19]. The SWIFT-3D system integrates
a collection of relevant visualization techniques ranging from familiar statistical
displays, to pixel-oriented overviews with interactive 3D-maps and drag+drop
query tools. The visualization component maps the data to a set of linked 2D
and 3D views created by different visualization techniques: Statistical 2D Visu-
alizations, Pixel-oriented 2D Visualizations, and Dynamic 3D Visualizations. In
all mentioned approaches, however, the visualization of large networks on maps
leads to the overlapping or overplotting problem of line segments in dense areas.

E-Mail Traffic Analysis One of the first uses of the internet is the electronic
mailing (e-mail). Messages are sent between users of computer systems to dif-



Regular Emails Filtered SPAM Emails

Fig. 4. The figures display the world wide e-mail routes of one of our IMAP users.
The IMAP server is located in Konstanz, Germany (37 41.0N / 09 08.3E). In our
department, SPAM hits one fourth of our e-mail traffic.

ferent places all over the world and the computer systems are used to hold and
transport the messages. There are several advantages of electronic mailing, as it
is a fast, cheap, and comfortable communication method. The number of inter-
net users increases exponentially and therefore more and more people are able to
send and receive e-mails. Today, corporate and university networks are becoming
increasingly clogged by e-mail pitches for pornography, money-making schemes
and health, products, and there’s little relief on the horizon. In our department,
about one fourth of our e-mail traffic are SPAM’s. In 2002, we had one SPAM
for every 20 legitimate e-mail messages; today the ratio is closer to one in four.
Using Anti-SPAM software on specialized servers can discern SPAM from legit-
imate e-mail. The software can also upload potentially new forms of SPAM for
analysis, and develop recognition algorithms to identify and filter new types of
SPAM e-mail. An other interesting approach is to visualize the path of SPAM
e-mail to see interesting patterns and behavior. The path information can be
derived from the e-mail headers. Figure 4 shows the regular and SPAM e-mails
path of one of the authors. The e-mail paths displayed in the plot have been
stored since 2000. Each spatial location corresponds to a computer system from
which the e-mails were sent. Each line segment describes the path of an e-mail
message between two computer systems. The picture on the right displays only
SPAM e-mails. Visualizing e-mail paths may help to find important patterns of
the e-mail traffic. The picture on the left shows that a major amount of e-mails
arrives from the USA. On the right hand side one can see that there is a strong
accumulation of hosts in the eastern countries, where SPAM e-mails originate
from.
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Fig. 5. The Figure displays the U.S. state population cartogram with the presidential
election result of 2000. The area of the states in the cartograms corresponds to the
population and the color (shaded and not shaded areas) corresponds to the percentage
of the vote. A bipolar colormap depicts which candidate has won each state.

2.3 Area Phenomena

The basic idea to visualize area phenomena is to represent the area phenomenon
as a closed contour, a set of coordinates where the first and the last points are
the same. Closed contours may be for example states, counties, cities, etc. Today,
two types of maps, called Thematic Map and Choropleth Map, are used in
Cartography and GIS-Systems. Thematic Maps are used to emphasize the spatial
distribution of one or more geographic attributes. Popular thematic maps are
the Choropleth Map (Greek: choro = area, pleth = value), in which enumeration
units or data collection units are shaded to represent different magnitudes of
a variable. Often the statistical values are encoded as colored regions on the
map. On both types of maps, high values are often concentrated in densely
populated areas, and low statistical values are spread out over sparsely populated
areas. These maps, therefore, tend to highlight patterns in large areas, which
may, however, be of low importance. In US Census Demographics Data Sets,



for example, such maps tend to highlight patterns in areas where few people
live, e.g. the large territorial states in the USA with less than 7 inhabitants per
square mile. Advanced map distortion techniques such as density equalized maps
or cartograms are a powerful way of visualizing area phenomena.

3 Cartograms

A cartogram is a generalization of an ordinary thematic map, which is distorted
by resizing its regions according to a geographically-related input parameter.
Example applications include population demographics [38], election results [25],
and epidemiology [13]. Because cartograms are difficult to make by hand, the
study of computer generated automated methods is of special interest [7] [8] [12]
[33] [38] [39]. Cartograms can also be seen as a general information visualization
technique. They provide a mean for trading shape against area to improve a
visualization by scaling polygonal elements according to an external parameter.
In population cartograms, more space is allocated to densely populated areas.
Patterns that involve many people are highlighted, while those involving fewer
people are less emphasized. Figure 5 shows a conventional map of the 2000
US presidential elections along with a population-based cartogram presenting
the same information. In the cartogram, the area of the states is scaled to their
population, so it reveals the close result of a presidential election more effectively
than the Original Choropleth Map in figure 5. For a cartogram to be effective, a
human being must be able to quickly understand the displayed data and relate
it to the original map. Recognition depends on preserving basic properties, such
as shape, orientation, and contiguity. This, however, is difficult to achieve and
it has been shown that the cartogram problem is unsolvable in the general case
[22]. Even when allowing errors in the shape and area representations, we are left
with a difficult simultaneous optimization problem for which currently available
algorithms are very time-consuming.

3.1 The Cartogram Problem

The cartogram problem can be defined as a map deformation problem. The input
is a planar polygon mesh (map) P and a set of values X , one for each region.
The goal is to deform the map into P so that the area of each region matches
the value assigned to it, doing this in such a way that the overall shape of the
regions is so preserved that they all remain recognizable.
Problem (The Cartogram Problem):
Input: A planar polygon mesh P consisting of polygons p1, . . . , pk, values X =
x1, . . . xk with xi > 0,

∑
xi = 1. Let A(pi) denote the normalized area of polygon

pi with A(pi) > 0,
∑
A(pi) = 1.

Output: A topology-preserving polygon mesh P consisting of polygons p1, . . . , pk
such that the function f(S,A) = ω ·

∑k
i=1 si + (1 − ω) ·

∑k
i=1 ai is minimized



with

S = {s1, . . . , sk} where si = dS(pi, pi) (Shape Error)

A = {a1, . . . ak} where ai = dA(xi, A(pi)) (Area Error)

∀j = 1, . . . , k and the weighting factor ω with 0 ≤ ω < 1.
Intuitively, topology preservation means that the faces of the input mesh

must stay the same, i.e. the cyclic order of adjacent edges in P must be the
same as in P. This can be expressed formally by saying that the pseudo-duals1

of the planar graphs represented by P and P should be isomorphic. Even a
simple variant of the cartogram problem, which even ignores issues of shape
preservation (ω = 0), is likely to be NP-complete. Since it may be impossible to
simultaneously fulfill the area and shape constraints, the functions f(·.·), dS(·, ·)
and dA(·, ·) model the error of the output cartogram.

3.2 The CartoDraw Algorithm

The basic idea of CartoDraw is to incrementally reposition the vertices of the
map’s polygons by means of scanlines. Local changes are applied if they reduce
the total area error without introducing an excessive shape error [22]. The main
loop iterates over a set of scanlines. For each scanline, it computes a candidate
transformation of the polygons, and checks it for topology and shape preser-
vation. If the candidate transformation passes the tests, it is made persistent,
otherwise it is discarded. The order of scanline processing depends on their po-
tential for reducing area error. The algorithm iterates over the scanlines until
the area error improvement over all scanlines falls below a threshold. The input
scanlines are arbitrary lines and may be automatically computed or interactively
entered. The idea for distorting the polygon mesh is to use line segments (called
cutting lines) perpendicular to scanlines at regular intervals. Consider the two
edges on the boundary of the polygon intersected by a cutting line on either side
of the scanline. These edges divide the polygon boundary into two connected
chains. Now, if the area constraints require that the polygon expands, the al-
gorithm applies a translation parallel to the scanline to each vertex of the two
connected pieces of the boundary (in opposite directions) to stretch the polygon
at that point. Similarly, if a contraction is called for, the direction of translation
is reversed.

3.3 VisualPoints-Approach

The basic idea of using the visual point approach for Cartogram generation is to
insert points into each polygon, where the number of these points corresponds
to the statistical parameter. After the quadtree is constructed, it is applied to
distort the vertices of the polygon mesh. Each vertex is repositioned separately:
1 The pseudo-dual of a planar graph is a graph that has one vertex for each face and

an edge connecting two vertices if the corresponding faces are adjacent.
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Fig. 6. The Figure displays (1) the U.S. state population cartogram computed with
VisualPoints, and (2) the U.S. state population cartogram computed with CartoDraw
showing the accomplished bachelor degrees or higher in the USA in 2000. The area of
the states in the cartograms corresponds to the population and the grey level of the
areas correspond to the percentage of the accomplished bachelor degrees or higher.

First the cell of the quadtree containing the vertex is determined. Then the new
position of the vertex is calculated by scaling the cells of the quadtree on each
level according to the desired size of the cells (corresponding to the number
of pixels). By repositioning each vertex, we iteratively construct the distorted
polygon mesh. Figure 6 shows a VisualPoints (see also section 2.1) population
cartogram representing the accomplished bachelor degrees in the USA in com-
parison with a CartoDraw cartogram. A comparison of both approaches can be
found in [23] [24].

4 Conclusion

Visual Data Mining is an important research area. Many data sources provide
data with spatial attributes. In this article, we describe an overview of methods
for visualizing large spatial data sets containing point, line and area phenomena.



The results show that the visualization of spatial data can be extremely helpful
for visually exploring large spatial data sets.
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