
The difficult task of sifting through the
data generated by the extensive use
of computers today—and locating
concise and interpretable informa-

tion within that data—is called knowledge dis-
covery in databases (KDD). Data mining refers
to one specific step in the KDD process—
namely, to the application of algorithms that can
extract hidden patterns from data (see the “KDD
Process” sidebar for more information).

The data mining technique we focus on in this
article is called clustering—partitioning a set of
data vectors into clusters and noise such that data
vectors within the clusters are similar to each
other and that the data items in different clus-
ters or noise partitions are not. Recent research
has proposed many algorithms for clustering.1

In all these methods, the user must choose the
algorithm and adjust it to application-domain-
specific knowledge via parameters. Because these
modifications strongly affect the algorithm’s final

result, the process must be repeated multiple
times to get useful results with different algo-
rithms and parameters. Visualization techniques
could support this step, deepen our understand-
ing of the process, and increase our confidence
in the results. Visual data exploration can deal
easily with highly inhomogeneous and noisy
data, for example, and its intuitive nature re-
quires no understanding of complex algorithms.

The approach we present here combines an
advanced clustering algorithm with new visual-
ization methods for a more effective interactive
clustering. We start with an efficient clustering
algorithm based on a generalized multidimen-
sional grid.2 It uses axes-parallel projections as
well as complex hyperpolygonal objects as sepa-
rators in the multidimensional space. Choosing
the axes-parallel projections and specifying the
separators to be used in building the multidi-
mensional grid, however, are two difficult prob-
lems that cannot be fully automated. Our visual
clustering system, the High-Dimensional Eye,
guides the user through the process of cluster-
ing and therefore helps improve the clustering
results significantly. 

Clustering

The statistics, machine learning, and KDD lit-
erature propose many specific clustering algo-
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rithms. Partitioning algorithms partition the data-
base into k clusters, which are represented by the
gravity of the cluster (k-means) or by one repre-
sentative data point (k-medoid).3 Hierarchical
clustering algorithms decompose the database into
several levels of partitionings, which are usually
represented by a dendrogram—a tree that splits
the database recursively into smaller subsets. Lo-
cality-based clustering algorithms usually group
neighboring data elements into clusters based on
local conditions.4,5

Most approaches are not designed for cluster-
ing of high-dimensional data, so the performance
(meaning the efficiency and effectiveness) of ex-
isting algorithms degenerates rapidly with in-
creasing dimension. To improve performance,
optimized clustering techniques have emerged.6–9

Unfortunately, the curse of dimensionality se-
verely affects the resulting clustering’s effective-
ness (or quality), especially in the presence of
noise. In previous work, we showed that existing
clustering methods suffer from either a severe
breakdown in efficiency (true for all index-based
methods) or have severe effectiveness problems
(basically true for all other methods).10

In image similarity, a simple feature vector is
color distribution. In three-dimensional similar-
ity search, a feature vector is the shape of the ob-
ject described, for example, by its Fourier trans-
formation. The selection of important properties
depends strongly on the application. The prop-
erties must represent the characteristics of one
particular object as well as the diversity of the
objects. We can define the clustering problem as
one of partitioning a set of data vectors into clus-
ters and noise such that data vectors within the
clusters are similar to each other and that the
data items in different clusters or noise partitions
are not similar. Determining the similarity be-
tween two data items, however, is difficult and
depends on the task and application. This is even
more important because the clustering results
strongly depend on the notion of similarity used;
exactly how to measure similarity effectively in
high-dimensional feature spaces remains an
open research question. 

Another problem of all clustering algorithms
is that one measure of similarity might not be
sufficient for the whole data set but could work
effectively for a subset of the data—for example,
a subset of the data points or of the dimensions.

Projected Clustering
The idea of projected clustering has attracted a lot
of attention during the past few years. (Infor-

mally, projected clustering means that only some
promising attributes are used to compute the
similarity and thus determine the clusters. In
cases with three-dimensional vectors, for exam-
ple, it might be possible to neglect one dimen-
sion, so the remaining two-dimensional subspace
is a projection of the original three-dimensional
one. HD-Eye uses projected clustering.) The
projected clustering problem consists of two
main tasks—namely, finding useful projections
of the high-dimensional data and determining
clusters in the projections. Both tasks depend on
each other because a projection is only useful if
it provides a good clustering, and a useful pro-
jection is needed to determine a projected cluster.
Therefore, an algorithm for the projected clus-
tering problem must decide whether a clustering
is good for a given projection, and it must search
the space of projections based on that criterion. 

The KDD Process
The steps of the knowledge discovery process involve under-
standing the application domain and the specification of the
overall process’s goal, acquiring and preprocessing data, selecting
and applying data mining algorithms, interpreting the findings,
and analyzing success. 

The KDD process is a circular flow. After the last step, new
questions arise that lead to a new iteration of the process. (A de-
tailed description of the KDD process appears elsewhere.1) Figure
A shows a common model of a data mining project that reflects
these steps called the CRISP (Cross-Industry Standard Process for
Data Mining), a nonproprietary, documented, and freely available
data mining model.

Reference
1. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowl-

edge Discovery in Databases,” AI Magazine, vol. 17, no. 3, 1996, pp. 37–54.
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16 COMPUTING IN SCIENCE & ENGINEERING

One of the first algorithms to deal with pro-
jected clustering—Clique11—mines the projec-
tion space from the bottom up by searching
quantitative frequent item sets (histogram bins).
Proclus12 and Orclus13 are k-means-like algo-
rithms that need the number of clusters and the
associated projections’ average dimensionality as
parameters.  The most recent method, Doc,14

defines a projected cluster as a hyperbox—the
maximum bounding rectangle of all data points
belonging to the cluster—with a boundary size
of w (one of the algorithm’s parameters) in the
bounded dimensions and an unbounded size in
the others. Doc uses sampling to center the
boxes around some randomly chosen data
points. The result is a set of hyperboxes that are
bound in some dimensions and contain the pro-
jected clusters.

Visualization and Projected Clustering
Visualization technology can help users apply
clustering algorithms. Several visualization tech-
niques are useful in data mining, including geo-
metric projection techniques such as prosection
matrices and parallel coordinates, icon-based
techniques, hierarchical techniques, graph-based
techniques, pixel-oriented techniques, and com-
binations thereof. Examples of well-known vi-
sual data exploration systems include XmDv,15

XGobi,16 and Parallel Visual Explorer.17 Most
visualization techniques are used in conjunction
with interaction and distortion techniques.18 Ex-
isting techniques, however, do not allow effec-
tive support of the projection-finding process,
which is needed for efficient clustering in high-
dimensional space.

In previous work, we investigated the link be-
tween clustering in projections and visualization

and developed a first prototype of HD-Eye.19 In
the prototype, we combined automated tech-
niques for finding clusters in one-dimensional
projections with appropriate visualizations that
let the user correct the automatically found re-
sults. In the new version, described in this article,
we add functionality to better handle two-di-
mensional projections and provide additional
features for combining automatic and interac-
tive clustering. In addition, we tightly integrate
HD-Eye with a database system.

The basic idea of projected clustering is to de-
fine the similarity among a cluster’s data points
as distance in some projection of the high-di-
mensional space. Figure 1 shows an example data
set containing two projected clusters that are de-
fined in dimensions x × y and x × z, respectively.
Projected clustering of high-dimensional data is
difficult because we have to find the data points
belonging to a cluster as well as a useful projec-
tion for defining the clustering.

To explain our approach of projected cluster-
ing, we must first define the data space, data set,
and density functions.

Definition 1: data space and data set. The d-
dimensional data space F = F1 × … × Fd is defined
by d bounded intervals Fi ⊂ R, 1 ≤ i ≤ d. The data
set D = {x1, …, xn} ⊂ F ⊂ Rd consists of n d-dimen-
sional data points xi ∈ F, 1 ≤ i ≤ n.

The probability density function is a fundamental
concept in statistics. In the multivariate case, we
have random variables from which we can ob-
serve data points in F. The density function f
gives a natural description of the distribution in
F and allows probabilities to be found from the
relation

(1)

for all regions Reg ⊂ F.
We can use the density function as a basis on

which to build clusters from observed data
points. Kernel density estimation provides a pow-
erful and effective method for estimating the un-
known density function f in a nonparametric way
from a sample of data points.

Definition 2: kernel density estimation. Let D ⊂ F ⊂
Rd be a data set, h be the smoothness level, and �⋅�
an appropriate metric with x,y ∈ F, dist(x,y) = |x – y|.
Then, the kernel density function based on the
kernel density estimator K is defined as

  f̂ D

  
P x f x dx

x
( ) ( )∈ =

∈∫Reg
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x

Figure 1. A three-dimensional data set with two projected clusters
defined in two dimensions. The clusters are bounded in two
dimensions but have a large extent in the third dimension.
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. (2)

The statistics literature has proposed various
kernels K, including square-wave and Gaussian
functions. Figure 2 shows an example for the
density function of a two-dimensional data set
using a square-wave and Gaussian kernel. A de-
tailed introduction to kernel density estimation
appears elsewhere.6,20,21

We can define clusters as sets of data points
that are density-attracted to a local maximum of
the density function.22 The definition of pro-
jected clustering is similar but considers a pro-
jection of the data space instead of the full-di-
mensional space. Each cluster can be defined in
different projections, so determining all the pro-
jected density functions to find the clusters is
computationally infeasible.

Practical approaches based on an iterative parti-
tioning of the data try to partition the data space
without partitioning any of the clusters. The most
efficient way to partition a data set is to use low-di-
mensional projections to split the data. If we use
just one-dimensional projections, the resulting
clusters are hyperboxes. If we use two-dimensional
projections, we can separate arbitrarily shaped re-
gions of the data. In both cases, the idea is to split
the data set only in the considered projection to
help us find projected clusters. A difficulty is that
the set of dimensions needed to separate a cluster
will likely differ for each cluster. Furthermore, two
clusters could overlap in some dimensions. 

How can we characterize the projected clusters
we find with HD-Eye? A hyperbox can describe
the cluster, but a better description is the sequence
of split operations needed to separate them. Start-
ing with the whole data set, in each iteration, the
user selects one or more one- or two-dimensional
projections that indicate distinguishable regions.
These regions are separated automatically or by
hand and each is processed recursively. The defi-
nition of a projected cluster reinforces that not all
dimensions are required to define the clusters and
lets the clusters have arbitrary shapes.

HD-Eye 

HD-Eye combines visualization techniques with
an advanced algorithm to perform projected clus-
tering. Here, we’ll describe the concepts of den-
sity-based single-linkage separators and the sep-
arator tree. The concept of separators is needed
to find well distinguishable regions, and the con-

cept of the separator tree helps keep track of the
iterative and recursive nature of our approach.
We’ll also present an efficient algorithm for de-
termining such separators, before finally intro-
ducing some visualization techniques to support
the process of finding the projected clusters.

The two main tasks of finding the appropriate
projections for partitioning the data and finding
and specifying good separators based on these
projections need visual support. Both tasks re-
quire the human user’s intuition and creativity
and cannot be done automatically.

Separators and Separation Tree
The HD-Eye framework uses a concept for clus-
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Figure 2. Density functions of (a) a two-dimensional data set using
(b) a square-wave kernel and (c) a Gaussian kernel. The subfigures
(b) and (c) show the density function corresponding to different
kernel function K—namely, the square-wave kernel and the
Gaussian kernel. In general, the choice of a Gaussian kernel results
in a smoother density function.



18 COMPUTING IN SCIENCE & ENGINEERING

tering that is similar to the one decision trees use
for classification. A decision tree comprises sev-
eral nodes, each containing a decision rule that
splits the data to achieve purer label sets in the
child nodes. In our case, we do not use class la-
bels to find a split—rather, we use a density func-
tion. The equivalent to the decision rule is the
separator, which partitions and labels the data
space’s points according to a clustering scheme.

Definition 3: separator. A separator is a point-
labeling function S: F → {0, …, Split(S) – 1} that
uses a density estimator to assign each point in
the continuous data space F a label (or integer) to
distinguish different clusters or groups of clusters.
The number of separated regions is Split(S) > 0.

Given a set of points A ⊂ Rd, we denote the sub-
set of points {x ∈ A: S(x) = i} as Si(A); there might
exist empty regions 0 ≤ i < Split(S), Si(A) = ∅. To
automatically separate regions in a one- or two-
dimensional projection, we use a separator as in-
troduced in definition 3. The density estimator
used in the separator definition is defined in the
one- or two-dimensional subspace of the particu-
lar projection.

Besides simple partitioning hyperplanes, we
mainly use two-dimensional projections for a spe-
cific type of separators: the density-based single-
linkage separator defines clusters as regions of max-
imal size in the data space, while the density all
over the cluster is larger than a minimum thresh-
old.23 According to this scheme, a cluster is arbi-
trarily shaped, so it cannot be represented by a
single centroid and the nearest-neighbor rule (like
a simple k-means clustering). Clusters found with
the density-based single-linkage separator are
useful for approximating complex correlations.

Based on ideas from other research, our infor-
mal definition for a density-based single-linkage
clustering makes no assumption about the den-
sity estimation function used.9,22

Definition 4: density-based single-linkage cluster-
ing. Given a set of objects described by the set of
feature vectors D = {x1, …, xn}, the partition C =
{C1, …, Cl} of D is a density-based single-linkage
clustering for a given density function and a
noise level ξ, if and only if the following prop-
erties are satisfied for all Ci, i = 1, …, l: the cluster
Ci is nonempty; the density on a path that con-
nects two points in Ci and is completely con-
tained in Ci does not fall below the threshold ξ,
and the cluster Ci has maximal size. Points x ∈ D
with are called outlier.

The intuition behind this definition is that a
cluster is a connected region R in the continu-
ous data space F, the density at all points of R is
above the noise threshold ξ, and the clusters are
isolated by low-density valleys. For our separator
approach, we need an algorithm that can find the
valley with the lowest density separating at least
two clusters or groups of clusters.

Because we want to find separators in many
(two-dimensional) projections of the data space,
we need a quality measure that compares differ-
ent separators. The quality measure for the den-
sity-based single-linkage scheme does not have a
straightforward definition. Again, though, low-
density valleys separate clusters. 

We define the separation quality qsep depend-
ing on the maximum density at the borders of
the cluster regions in the continuous data space
F. The point at a cluster’s border with the max-
imum density is the point on which the cluster is
hard to distinguish from neighboring regions.
The set Border(S) � F of cluster border points
is determined by a separator S. Intuitively, it is
defined as the set of points x ∈ F with the prop-
erty that each arbitrary small neighborhood
around x contains two points with different
cluster labels. This definition is valid because a
separator labels the data points as well as all the
continuous data space’s points. The separation
quality is defined as

. (3)

Figure 3 shows an example data set’s separa-
tor quality. The color shows the density on the
border between the two clusters; the separator
quality corresponds to the inverse of the border’s
maximum density.

Because a single separator does not necessarily
separate all of a data set’s clusters at the same
time, we need a more global structure to inte-
grate multiple separators defined in different
projections. One way to accomplish this is with
separator trees. Similar to a decision tree, which
is an assemblage of classification rules forming
a classifier, a separator tree is a collection of sep-
arators forming a cluster model for the given
data with regard to the user’s intention.

Definition 5: separator tree. A separator tree T is a
tree that corresponds to a recursive partitioning
of a data set D. A node v of T corresponds to a
cluster region Rv ⊂ F. Except the leaves, each
node v has an assigned separator Sv that splits the

  
q S MAX f x x Border Ssep

D( ) ˆ ( ) ( )= − ∈{ }1

  (̂ )f x < ξ

  (̂ )f ⋅



MARCH/APRIL 2003 19

corresponding region Rv. The ith son of v cor-
responds to the region Si

v(Rv). The root node’s re-
gion is the whole data space F.

The split operation grows the tree: it takes a
leaf node l of a separator tree T, assigns a sep-
arator S to l, and thus defines the new son
nodes of l (see Figure 4). The region R of l is
decomposed into subregions, each containing
different clusters or groups of clusters. Because
the separators are not defined in the same di-
mensions, we can integrate complex separators
from different projections into a single clus-
tering model. 

Algorithm
We found an efficient algorithm that finds approx-
imated density-based single-linkage separators in
two-dimensional projections. By definition, the
original single-linkage problem has quadratic run-
time complexity in the number of data points—
each data point must be compared with every
other to see if they can be linked (or whether the
density between them is high enough). For large
databases, this is prohibitively expensive. 

To make the algorithm scalable, we first re-
duce the set of data points D = {x1, …, xn} to a
set of centroids P = {p1, …, pk}. We can do this
with a variant of the k-means algorithm, which
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Figure 3. The quality of the density-based single-linkage separator is determined as the maximum density at the border
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(b) the dashed line and (c) the solid line. The separation quality in the example is 0.57.
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uses a histogram as an approximation of the data
set. The reduction decreases the number of ob-
jects from n to k with k � n.

After reducing the data set, the second task is to
determine the connected high-density regions
based on the data set’s centroid representation. For
two-dimensional projections, we use the weighted
Delaunay graph,23 which is called a cluster graph:

G = (V, E, w) with V = {pi : 1 ≤ i ≤ k}, (4)

where E is defined according to the Delaunay
triangulation, and

∀e = (p, p′) ∈ E, 

w(e) = min   .
(5)

Because the density function is not available in
analytical form, the weight determination imple-
mentation works with a discretization of the line
between the centroids and estimates the density
on r ≥ 1, r ∈ N points at the line between p and p′.

Centroids belonging to the same high-density
region are at least transitively linked in the clus-
ter graph with edges of large weights. To sepa-
rate such regions, the algorithm deletes the edges
in ascending order according to their weights un-
til the graph splits into two connected compo-

nents. The threshold for the noise level ξ is set
to the weight of the last deleted edge. We assume
that all nodes with a lower density than ξ ap-
proximate noise points and collect them in a spe-
cial prototype subset P0. The following algorithm
describes the method in pseudo code. (Figure 5
shows an example of the algorithm’s result.24)

db_slink_separator (G(V = P, E, w), )
Require: G(V = P, E, w) initial cluster graph
Ensure: P1, P2, … contains the centroids in con-
nected high-density regions isolated by density val-
leys with maximal density ξ (separation quality), P0
contains prototypes approximating noise 

1: ξ ← 0, P0 ← ∅
2: while G is connected do
3: determine e with w(e) = min{w(e′), e′ ∈ G.E}
4: ξ ← w(e)
5: G.delete_edge(e)
6: P0 ← P0 ∪ {p ∈ G.V, }
7: delete all nodes p from G with 
8: end while
9: P1, P2, … ← Determine_Connected_

Components(G) 
10: return(P1, P2, …, P0, ξ)

The separator algorithm’s output is a partition
of P into two subsets of centroids (which approx-
imates connected clusters or cluster groups) and
possibly a subset of centroids (which approximates
outliers P0). We can label a data point x (or assign
it to a cluster) by looking for the nearest centroid
pI(x) ∈ P and determining the index i of the subset
of centroids with pI(x) ∈ Pi. (Note that I(x) deter-
mines the index of the nearest centroid to x.)
Therefore, the Voronoi edges that correspond to
the deleted edges in the induced Delaunay graph
approximate the separating density valley.

We can use a recursive variant of the separa-
tor algorithm to approximate the single-linkage
hierarchy. In this case, the subsets of centroids
as well as the cluster graph’s corresponding sub-
graphs are inputs of recursive calls of the sepa-
rator algorithm. The following algorithm ap-
proximates the hierarchy; the intermediate
cluster descriptions C can be stored in a tree to
form the hierarchy:

db_slink_hierarchy (G(V = P, E, w), )
Require: G(V = P, E, w) cluster graph 
1: if #(P) = 1 then
2: return
3: end if
4: (P1, P2, …, P0, ξ) ← db_slink_separator

(G(V = P, E, w), ) {We assume G  f̂

  f̂

  
ˆ ( )f p < ξ

  
ˆ ( )f p < ξ

  f̂

  
ˆ ' : [ , ]f p t p p t+ ⋅ −( )( ) ∈{ }0 1

Figure 5. A Voronoi diagram (thin solid lines) with an underlying
data distribution (shaded areas) and the Delaunay graph (thick
solid and dashed lines). The thick dotted edges are the remaining
edges of the Delaunay graph, which the separator algorithm does
not delete. The dashed edges have a low density and are deleted by
the density-based single-linkage separator.
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contains only nodes with and 
edges with w(e) ≥ ξ after the call.} 

5: C ← {P1, P2, …} {Note that P0 does not belong
to the actual clustering C.} 

6: for all Pi ∈ C do
7: Vsub←Pi, Esub←{e(p, p′) : p, p′ ∈Pand e∈G.E}
8: db_slink_hierarchy(Gsub(Vsub, Esub, w), )
9: end for

Figure 6b shows the approximated clustering
determined by db_slink_hierarchy; Figure 6c
shows the upper part of the corresponding hier-
archy. Using the density-based single-linkage sep-
arator recursively until all clusters are separated
can interactively integrate the relevant parts of the
hierarchy. The separation quality of the clusters
on each level is reflected by the noise level ξ (or
splitting density), which increases for each recur-
sive splitting. Higher splitting density indicates
low separation quality. We can use the separator
tree to exclude branches of the hierarchy and en-
courage further separation. In this way, we can han-
dle arbitrarily shaped clusters of different densities.

Visualizations 
So how does HD-Eye visually support the
process of finding projected clusters? Figure 7
shows an overview screenshot of the HD-Eye
system. The middle part of the figure shows an
overview of the one-dimensional projection’s
density distribution. Each arc shows a one-di-
mensional histogram in which the density is
mapped to a color (dark means high density).
The right part (with the green squares) shows
two-dimensional density distributions. The al-
gorithm determines a density-based single-link-
age separator for the selected projection and
shows it as a graph in the detailed plot.

To find splits in the one-dimensional projec-
tions, the user can determine meaningful values
for the noise level ξ. In Figure 8a, ξ is set to zero,
and in Figure 8b, it’s set to 6 percent to help the
automated split algorithm find good splits.19 The
part of the histogram below the noise level ap-
pears in yellow. The rule of thumb is to select the
noise level as low as possible (to keep many points
in clusters), but high enough to get a good visual-
ization where regions can be visually separated.

One important aspect, particularly for two-
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Figure 6. The hierarchical splitting of (a) a data set with multiple arbitrarily shaped clusters: (b) the result of the recursive
splittings using the density-based single-linkage separator and (c) the upper part of the single-linkage hierarchy.

Figure 7. An initial snapshot of HD-Eye with different visualization
techniques. For the selected dimension (the arc with the filled red
dot), the detailed distribution is shown as bar chart in the lower left
corner. Because the distribution shows multiple peaks, the user
might be interested in that dimension. The right part (with the
green squares) shows two-dimensional density distributions. The
selected one is the projection 12 × 3, which is also shown in detail
in the right upper corner.
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dimensional projections, is color mapping. A lin-
ear mapping of density to color yields poor results
(as Figure 9a shows). To improve the contrast, we
need a nonlinear mapping. Figures 9b and 9c
show the result of a square-root and logarithmic
color mapping, respectively, which means that the
square root and the logarithm of the density are
mapped to color. The clusters are much easier to
perceive in the nonlinear mappings than in the
linear mapping.

Putting HD-Eye to the Test

To evaluate HD-Eye, we used the ecoli and
pendigits data sets from the University of Califor-
nia at Irvine’s Machine Learning Repository (see
www.ics.uci.edu/~mlearn/MLRepository.html).
To show how to apply HD-Eye, we use the ecoli
data set, which records information about E. coli
proteins. The data set is challenging because of
the overlap between clusters and varying cluster
sizes: five clusters have 143, 77, 52, 35, and 20
data points, respectively, and the remaining three
clusters consist of only nine points. The data set
is labeled, meaning we can verify our visual clus-
tering’s validity.

At the beginning, the user sees the circular his-
tograms of all dimensions and a matrix of all
two-dimensional density plots for the whole data
set (see Figure 10). Dense regions are colored
blue; sparse regions appear in green.

Looking at the circular histograms, the user
might notice that dimension alm2 has a bimodal
distribution, which window 1 in Figure 11 shows.
To achieve a good partitioning, the user can split
the data between the two bumps by placing a sep-
arator (the red line in window 1) between them.
The system automatically splits the data at the
separator and computes the histograms for the
two partitions, which windows 2 and 3 show, re-
spectively. Window 4 shows the new separation
tree. You can see that the distributions of dimen-
sions acc and alm1 in windows 2 and 3 (corre-
sponding to the two partitions of the data set) dif-
fer from each other and from the whole data set’s

Figure 8. One-dimensional projections with different noise levels:
(a) ξ = zero and (b) ξ = six percent. This increase removes regions
with low density, helping the user find good separators more easily.    

Figure 9. The pendigits data set with different color mappings: (a) linear, (b) square root, and (c)
logarithmic. The color mapping choice strongly effects the visual perception; unfortunately, the color
cannot be chosen in advance. The user could select different mappings to find the one that gives the
best contrast.

Figure 10. An initial snapshot of HD-Eye. One window contains circular
histograms, and the others contain all two-dimensional density plots.
The visual information corresponds to the whole data set.

(a) linear (b) square root (c) logarithmic

(a) (b)
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distributions. This shows that the split operation
was successful, because the user can see that the
two subsets in windows 2 and 3 differ signifi-
cantly. Using the known labeling of the data set,
we verified the split operation’s importance and
determined that one partition contains two clus-
ters and the other contains three.

As we mentioned earlier, one-dimensional pro-
jections are not sufficient for clustering data. To
show this, let’s demonstrate the use of two-di-
mensional projections. Looking at the matrix in
Figure 12, the user sees that one density plot
(marked with a 1) reveals two clusters and can split
the data. To determine the separator, we use the
density-based single-linkage separator. Figure 13
shows the result of the split; windows 3 and 4 show
the corresponding matrix of density plots for each
partition. You can see that the two partitions the
split generated uncover a completely different dis-
tribution in some of the two-dimensional projec-
tions, which is best seen in the projection alm2 ×
mcg. Window 1 shows the density plot of the pro-
jection alm2 × mcg for one partition, and window
2 shows it for the other. One partition has a higher
density in the upper region, whereas the other par-
tition has a higher density in the bottom one. Us-
ing the available labeling, we verified this obser-
vation and confirmed that the partitions represent
different clusters of the data set.

The general strategy of working with HD-Eye is
as follows. First, the user scrutinizes the histograms
and two-dimensional density plots to find interest-
ing properties such as bimodal distributions or
noise regions. After identifying them, he or she
separates the data either with a one-dimensional
or two-dimensional separator and repeats the
process with the obtained partitions recursively as
long as he or she detects interesting distributions.

When applying this strategy, we find all five
major clusters in the ecoli data set with a high-
quality clustering (classification rate of 84 per-
cent). The best results achieved with automated
classification algorithms have a classification rate
of 81 percent. This shows that interactive clus-
tering using visual and automated algorithms can
provide better results than automated algorithms
can achieve alone. In addition to the high quality,
HD-Eye gives the user a visual impression of the
data and more confidence in the results.

We used the ecoli data set because of its sim-
plicity to show how HD-Eye works. Let’s look at
how the system handles lots of dimensions and
data points—namely, the pendigits data set, which
contains 7,494 tuples and 16 dimensions that de-
scribe handwritten digits. The pendigit data set

was created by collecting samples of handwritten
digits from different writers. To represent digits
as constant length feature vectors, a resampling
algorithm applying a linear interpolation between
pairs of points is used. Applying our strategy, we
discovered 19 clusters in the data. This is surpris-
ing, because we expected only 10 clusters, corre-
sponding to the 10 digits in the data (see Table 1

Figure 11. The effect of a one-dimensional split operation. The
applied separator appears as a red line in window 1. The operation
splits the whole data set into two partitions; Windows 2 and 3 show
the corresponding histograms of the two partitions.

Figure 12. How a two-dimensional split operation works. The density
plot marked with 1 shows two clusters, and the window marked with
2 is an enlargement. The enlargement shows the induced Delaunay
graph, which assigns the data points to the two clusters.
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for the clustering’s confusion matrix). Identifying
the data points corresponding to digits 2, 3, 4, 6,
and 7 is easy in the sense that one node in the sep-
arator tree lets us cut away almost all the data
points labeled with the given digit and only the
points with the given label. The data points cor-

responding to the remaining digits require more
cuts. Different nodes in the separation tree let us
cut away a certain small amount of data points la-
beled with a given digit. 

How can we rate the clustering’s quality? For
each cluster, we determine the digit with the
highest support (the bold numbers in Table 1)
and state that the particular cluster forms a sub-
cluster of all data points labeled with that digit.
Adding all the bold numbers in Table 1, we get
the number of data points assigned to the cor-
rect clusters. In this experiment, we assigned 80
percent of the data points to the correct cluster,
which is a good result for the given data set.

The HD-Eye system combines an ad-
vanced algorithm with visualization
techniques that can support the clus-
tering process via a visual representa-

tion of the important information. The visualiza-
tion technique uses a pixel-oriented view that lets
the user place cluster separators directly or auto-
matically in visualizations. Experimental evalua-
tion shows that the combination of automatic and
visual techniques significantly improves the effec-
tiveness of the data mining process and provides
a better understanding of the results. We used our
algorithm on labeled data. Each data item belongs

Figure 13. The effect of a two-dimensional split operation. Windows
3 and 4 show density plots for the partitions resulting from a split
operation. Windows 1 and 2 emphasize that the two subsets have
significantly different characteristics.

Table 1. The confusion matrix for our clustering of the pendigits data set. Columns correspond to real clusters (digits 0 to
9) and rows correspond to the found clusters (cluster 1 to 19). 

0 1 2 3 4 5 6 7 8 9 10
1 13 698 3 3 717
2 3 3 180 186
3 518 8 48 574
4 3 22 8 37 12 683 1 2 17 785
5 1 1 1 3 110 116
6 3 1 2 89 4 99
7 29 3 7 179 218
8 38 102 113 17 4 169 443
9 10 3 5 29 48 1 65 161
10 365 1 2 13 63 444
11 32 603 15 11 85 60 80 886
12 16 17 2 12 47
13 181 743 3 7 8 18 1 961
14 1 112 3 5 35 156
15 13 1 7 567 103 8 699
16 62 4 66
17 12 385 1 4 33 435
18 3 1 263 267
19 213 5 2 7 7 234
Σ 780 779 780 719 780 720 720 778 719 719 7494
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to a different class, which the label annotates. Our
algorithm classified 84 percent with the right la-
bel in contrast to older results with 81 percent.

The combination of automated and visual tech-
niques, which HD-Eye demonstrates, will have a
noticeable effect on clustering high-dimensional
data in the context of data mining. Our plans for
future work include applying and fine-tuning our
method for specific applications as well as an ex-
tension to include other visual representations.

The HD-Eye software is available from http://
hdeye.sourceforge.net. A further extension is the
possibility of merging different results from mul-
tiple users analyzing the same or slightly differ-
ent data. This can be a way to combine the view of
two experts working on the same data.
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