
Cartographers and geographers were mak-
ing cartograms for centuries before digital

computers and displays became available. One of the
oldest known cartograms, dating to about 300 C.E.,
depicts the extent of the Roman Empire. In data visual-
ization, an area cartogram distorts a map by resizing its
regions according to some external geography-related
parameter, such as population or epidemiological data.

Figure 1 shows two historical examples. Figure 1a,
from a 1927 medical journal, depicts the incidence of
smallpox in the western US. It was made by an analog

computer: modeling clay and a
baker’s rolling pin. Daniel Walling-
ford drew the cartogram in Figure
1b in 1932 and distributed it at the
New York World's Fair (note Flori-
da’s size).

Cartograms are difficult to draw
by hand because it’s difficult to
simultaneously optimize shape and
area error while preserving the orig-
inal map’s topology. Automated
methods for drawing cartograms
have therefore received consider-
able interest (see the “Previous
Work” sidebar).

Population-based cartograms can give a different over-
all impression from the original map. In a conventional
choropleth map, for example, where parameter vectors
are encoded by coloring the regions, important values
in small, densely populated areas can be barely visible,
while less important values spread out over large, sparse-
ly populated areas seem emphasized. Such maps, there-
fore, tend to highlight patterns in areas with few people!
Because cartograms can show geographic data in pro-
portion to an additional parameter, such as population,
they can display patterns in proportion to the number of
people involved. Beyond the typical applications, a key
motivation for studying computer cartograms is to define
a general framework for trading shape and area adjust-
ments in information visualization.

For a cartogram to be effective, an observer should be
able to quickly relate the displayed data to the original
map. Intuitive recognition depends on preserving basic
properties such as shape, orientation, and contiguity.
This, however, is difficult to achieve, because it’s impos-
sible, in the general case, to retain even the original map’s
topology. Even if we accept some error in shape and area
in the cartogram, what remains is still a hard simultane-
ous optimization problem for which known algorithms
are prohibitively time consuming. Further, because we’re
interested in the applicability of fine-grained and ani-

Feature Article

A method for generating

cartograms that combines

iterative relocation of a

map’s vertices with medial-

axis-based transformations

retains the input map’s

topology.

Daniel A. Keim and Christian Panse
University of Constance, Germany

Stephen C. North
AT&T Shannon Laboratory

Medial-Axis-Based
Cartograms

60 March/April 2005 Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE

(a) (b)

1 Historical examples of cartograms: (a) Gillihan’s cartogram made with plasticine and a rolling pin, and (b)
Wallingford’s “A New Yorker’s Idea of the United States.” (Courtesy of the American Journal of Public Health)

mated cartograms, we need more efficient algorithms.
We’ve developed an approach to computing continu-

ous cartograms based on the medial axis of the input
mesh. (The “Variants of the Cartogram Problem” side-
bar describes other approaches.) Other researchers have
suggested using the medial axis as a compact represen-

tation of an object’s shape, making it a natural choice
for our use. We combine this with the idea of using scan-
lines to guide cartogram generation.1 In essence, the
scanline approach interprets a line segment drawn
through the map as a hint to the direction in which to
expand or contract polygons. A series of such local

IEEE Computer Graphics and Applications 61

Previous Work
Few previous approaches to automated

contiguous cartogram drawing yield results
comparable in quality to good hand drawings.
One reason, first identified by Dent,1 is that
straight lines, right angles, and other features that
seem important in human recognition of maps are
obliterated. Radial methods such as Tobler’s
conformal maps,2 Selvin et al.’s radial expansion
method,3 Dougenik et al.’s rubber sheet method,4

and Guseyn-Zade and Tikunov’s line integral
method5 don’t provide completely acceptable
results, because they often heavily deform the
polygons’ shapes, as Figure A shows. Likewise,
Tobler’s pseudocartograms expand the longitude
and latitude lines to achieve a least root mean
square area error.2

Approaching the problem as distortion viewing
by nonlinear magnification produces similar
drawings. Jackel applied radial forces to change
polygon size, moving the sides of each polygon
relative to its centroid,8 but an implementation of
the solver runs slowly (taking 90 minutes to make
eight iterations on a map of six New England
states of the US). Nonconvex input polygons and
potential self-intersections in the output map
further complicate matters.

Another family of approaches operates on a grid
or mesh imposed on the input map. The piezopleth
method9 transforms the grid using a physical
pressure load model. Dorling’s cellular automaton
approach trades grid cells on a fine mesh until each
region achieves the desired number of cells.10

Edelsbrunner and Waupotitsch’s combinatorial
approach6 computes a sequence of piecewise linear
homeomorphisms of the mesh that preserve its
topology. Whereas the first method effectively
preserves polygons’ shapes, the second method
allows a good fit for area but doesn’t account for
shape preservation. Kocmoud and House
synthesized the two approaches, proposing a force-

based model and alternately optimizing shape and
area objectives.7 Although the results are better
than most other methods, this optimization has
prohibitively high execution time. Kocmoud and
House report a running time of 18 hours for a
reasonable-sized map with 744 vertices.

References
1. B.D. Dent, Cartography: Thematic Map Design, 4th ed.,

William C. Brown, 1996
2. W.R. Tobler, “Pseudo-Cartograms,” American Cartog-

rapher 13, vol. 1, 1986, pp. 43-40.
3. S. Selvin et al., Transformations of Maps to Investigate

Clusters of Disease, tech. report LBL-18550, Lawrence
Berkeley Laboratory, Univ. of Calif., 1984.

4. J.A. Dougenik, N.R. Chrisman, and D.R. Niemeyer, “An
Algorithm to Construct Continuous Area Car-
tograms,” The Professional Geographer, vol. 37, no. 1,
1985, pp. 75-81.

5. S. Gusein-Zade and V. Tikunov, “A New Technique for
Constructing Continuous Cartograms,” Cartography
and Geographic Information Systems, vol. 20, no. 3,
1993, pp. 66-85.

6. H. Edelsbrunner and R. Waupotitsch, “A Combinato-
rial Approach to Cartograms,” Computational Geome-
try, vol. 7, nos. 5-6, 1997, pp. 343-360.

7. C.J. Kocmoud and D.H. House, “Continuous Car-
togram Construction,” Proc. IEEE Visualization, IEEE CS
Press, 1998, pp. 197-204.

8. C.B. Jackel, “Using Arcview to Create Contiguous and
Noncontiguous Area Cartograms,” Cartography and
Geographic Information Systems, vol. 24, no. 2, 1997,
pp. 101-109.

9. C. Cauvin, C. Schneider, and G. Cherrier, “Cartographic
Transformations and the Piezopleth Method,” Carto-
graphic J., vol. 26, no. 2, 1989, pp. 96-104.

10. D. Dorling, Area Cartograms: Their Use and Creation,
1st ed., Dept. of Geography, Univ. of Bristol, England,
1996.

A Cartogram drawing methods: (1) conformal maps,2 (2) line integral method,5 (3) combinatorial approach,6

and (4) force-based model.7

improvements using different scanlines leads to the final
cartogram. Our approach runs fast enough to handle
large maps, and preserves shapes accurately while
reflecting the associated geospatial data set.

Cartogram drawing
We pose cartogram generation as a map-deformation

problem. The input map is a planar polygon mesh and a
value associated with each region (face) that’s a desired
fraction of the total cartogram area. The goal is to deform
the map so that each region’s area is close or equal to the
target, while preserving the map’s connectivity and the
shapes of its faces, including the overall shape.

Definition: The Cartogram problem
Input. A planar polygon mesh P consisting of polygons

p1, …, pk, values V = (vi)i=1, …,k with vi > 0, Σvi = 1, and ∀i,
j ∈ {1, …, k} ∧ i ≤ j → vi ≥ vj. That is, the elements of
are sorted in nonincreasing order. Let A(pi) denote the

normalized area of polygon pi with A(pi) > 0, ΣA(pi) = 1.
Output. A topology-preserving polygon mesh⎯P con-

sisting of polygons ⎯p1,…,⎯pk such that the function
f: �k × �k→ � is minimized:

f (⎯S,⎯A)→min
where

⎯S=(s1, …, sk) with si=ds(pi,⎯pi) is the shape error
and
⎯A =(a1, …, ak) with ai = dA(vi , A(⎯pi)) is the area
error.

Topology preservation means that P and⎯P must be
homeomorphic. We can define that in terms of Betti
numbers2 or by explicitly testing that there’s a one-to-
one mapping of faces from P to faces of ⎯P that pre-
serves adjacencies.

Area error
Because it’s generally impossible to exactly satisfy

Feature Article

62 March/April 2005

Variants of the Cartogram Problem
Several categories of cartogram problems exist.
Noncontinuous cartograms, shown in Figure A1, can

exactly satisfy area and shape constraints but don’t preserve
the input map’s topology. Because the scaled polygons are
drawn inside the original regions, the loss of topology
doesn’t cause perceptual problems. More critical is that the
polygons’ original size restricts their final size.
Consequently, you can’t make small polygons arbitrarily
large without scaling the entire map, so important areas
can be difficult to see and screen usage can be poor.

Noncontiguous cartograms, shown in Figure A2, scale all
polygons to their target sizes, perfectly satisfying the area
objectives. Shapes can be slightly relaxed so polygons touch
without overlapping, and the map’s topology is also highly
relaxed because polygons don’t retain their adjacency

relationships. Noncontiguous cartograms provide perfect
area adjustment with good shape preservation. However,
they lose the map’s global shape and topology, which can
make perceiving the generated visualization as a map
difficult.

Circular cartograms, shown in Figure A3, completely
ignore the input polygons’ shape, representing them as
circles in the output. In many cases, area and topology
constraints are also relaxed, so circular cartograms have
some of the same problems as noncontiguous cartograms.

The final category is continuous (and contiguous)
cartograms, shown in Figure A4, which we generated using
an algorithm presented elsewhere.1 Unlike the other
categories, contiguous cartograms retain a map’s topology
perfectly, but relax the given area and shape constraints. In
general, cartograms can’t fully satisfy shape or area

objectives, so cartogram
generation involves a complex
optimization problem in
searching for a good
compromise between shape
and area preservation.
Although continuous
cartograms are difficult to
generate, the resulting
polygonal meshes resemble the
original map more than those
generated by other cartogram
variants. Our study therefore
focuses on continuous
cartograms.

Reference
1. D.A. Keim et al., “Efficient Car-

togram Generation: A Compari-
son,” IEEE Symp. Information
Visualization (InfoVis), IEEE CS
Press, 2002, pp. 33-36.

A Variants of the cartogram problem: (a) noncontinuous cartogram, (b) noncontiguous
cartogram, (c) circular cartogram, and (d) continuous cartogram.

(a) (b)

(c) (d)

area and shape constraints simultaneously, we seek
approximate solutions. The functions f, dS, and dA model
error in the output cartogram. In the simplest case, the
single polygon area error function dA is the norm of the
difference of the desired and actual area.

If we normalize vi and A(pi), (vi > 0 ∧ ∑vi = 1; A(pi) >
0 ∧ ∑A(pi) = 1), and wi is a weight between 0 and 1, we
can express the area error dA as

The weight function wi is important for generating
informative cartograms. In meshes of thousands of poly-
gons, all faces will likely have equal importance. The
area error in regions of high interest (for example, with
high vi values) should therefore have more influence on
the overall error than the area error in regions of low
interest.

In applications where only a few polygons are of inter-
est (as given by the factor ξ(0 ≤ ξ ≤ 1)), we can ignore the
others’ area errors, giving us the weights:

We use this type of weight function in some of the
application experiments we describe later.

Shape error
We can compare the shapes of two polygons in vari-

ous ways. For example, we can approximate the poly-
gons’ curvature using a turning angle algorithm,
curvature plots such as the centroidal profile, super seg-
ments, geometric hashing, or Fourier approximations.
Our implementation incorporates a Fourier transfor-
mation of the polygons’ curvatures. If C(p) denotes the
curvature of a polygon p and F(C(p)) denotes its Fouri-
er transformation, we define the shape error dS as

where ||·|| denotes the Euclidean L2 norm. Note that we
can determine the Fourier transformation of the poly-
gons’ curvature analytically.3

Defining cartogram generation this way means that
feasible solutions always exist, although finding good
ones might be difficult. In contrast, variants that allow
absolute area constraints can be infeasible.1

M-CartoDraw
The M-CartoDraw algorithm incrementally reposi-

tions the vertices of the polygon mesh using medial axis
segments as scanlines. The medial axis, or skeleton, of
a 2D region is the loci of the centers of its maximal
inscribed circles, as Figure 2a illustrates. Many equiva-
lent definitions of the medial axis transform exist. For
example, some researchers define the transform as the
centers of the circumcircles of the polygon’s Delaunay
triangulation. The prairie fire transformation3 is a more
intuitive definition. Imagine the polygon’s interior is dry
grass and the exterior is unburnable wet grass. Suppose

we set a fire simultaneously at all points on the polygon’s
boundary. The fire propagates at uniform speed toward
the figure’s middle. At some points, however, different
fire fronts meet and extinguish each other. These points
are the fire’s quench points; the set of quench points
defines the figure’s skeleton.

Figure 3a illustrates the application of the medial axis
to cartograms. We use census population data for the tar-
get area vector V. We encode area error using a bipolar
red and blue color map. Blue regions should be larger;
red regions smaller. Color intensity indicates magnitude.

Assume we draw a scanline inside a polygon. Our

d p p F C p F C p i k
s i i i i

, , , ,() = ()() ()() ∀ = 1 …

w v
i

jj

i

= ≤
⎧
⎨
⎪

⎩⎪
=∑1

0
1

if

otherwise.

ξ

d v A p w v A p i k
A i i i i i

, , ,()() = ⋅ − () ∀ = 1 …

IEEE Computer Graphics and Applications 63

2 Medial axis: (a) rectangle with circles, (b) triangle, and (c) polygon.

3 Cartogram algorithm: (a) map with area error and medial axis, (b) stretch-
ing and contracting the global polygon, and (c) example cutting lines.

(a)

(b)

(c)

algorithm computes line segments (or cutting lines) per-
pendicular to the scanline at regular intervals. A scanline

divides the polygon’s boundary into two chains. To
expand the polygon, the algorithm applies a translation
parallel to the scanline to each vertex on the chains (in
opposite directions). To contract it, the algorithm
applies the translation in reverse. Our algorithm repeat-
edly applies medial axis segments as scanlines, thus
using the polygon’s shape to make local expansions or
contractions. Figure 3b shows three examples of this
process. In the midwest, a cutting line contracts the glob-
al shape, while in the northeast and Florida, the global
shape is stretched. We insert the cutting lines in regular
intervals on the medial axis. Figure 3c shows cutting

lines at six different map locations.

Cartogram algorithm
The algorithm in Figure 4

processes a single medial axis seg-
ment. The function computeScal-
ingFactor determines whether to
stretch or contract the global poly-
gon and the amount of adjustment
(line 1). We compute this function
as a weighted average of the area
errors of the polygons cut by the cut-
ting line, weighted by their scale fac-
tors. The algorithm doesn’t calculate
new positions of all vertices for each
cutting line. Instead, it aggregates
the distortion vectors for each point
and applies the aggregate vector
after considering all cutting lines of
a medial axis segment (line 2).

Figure 5 (next page) shows the
main algorithm. The top-level loop
iterates over all medial axis segments
(line 2), computes a candidate trans-
formation of the polygon, and
checks for topology preservation
and shape error (line 3). The order
in which the algorithm processes
medial axis sections depends on
their potential for reducing area
error. A shape error threshold εs con-
trols the maximum error that can be
introduced in one step. If a candidate
transformation passes these tests, it
is made persistent, otherwise it is dis-
carded. The algorithm continues the
iteration until the total area error
improvement is below a threshold εa

(line 1). In processing individual
medial axis segments, we let the
algorithm increase the area error if
necessary to escape local minima.
However, in each main loop iteration
the area error decreases monotoni-
cally, guaranteeing termination.

Figure 6 shows what happens
when we incrementally apply M-
CartoDraw to a US population car-

togram. As before, the blue polygons should be larger,
and red ones smaller. The algorithm quickly provides

Feature Article

64 March/April 2005

M-CartoDraw(P, V);
/* initialize the node array which stores the candidate transformation */;

XY .init(P, (0.0; 0.0));
1 wwhhiillee (⏐⏐Earea − AE(P, X)⏐⏐ > εa) ddoo

Earea = AE(, X);

/* compute the medial axis MA of the global polygon */;

MA = computeMedialAxes(GP(P));
2 for MASeg ∈ MA do

processMASegment(P, V, MASeg, XY);

3 if (T(P, XY) ∧ (SE(P, XY) ≤ εs) ∧ (AE(P,
X, XY) < Earea)) then

makePersistent(P, XY);

5 M-CartoDraw algorithm.

6 M-CartoDraw construction series: (a) step 0, (b) step 1, (c) step 2, (d) step 3, (e) step 4, (f)
step 5, (g) step 6, (h) step 7, (i) step 8, (j) step 9, and (k) step 10 (area error in step 10 is less
than 3 percent).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

processMASegement(P, V, MASeg, XY);
/* for all cutting lines on medial axis segments MASeg */;

ffoorr cl ∈ CuttingLines(MASeg) ddoo

/* determine the aggregated scaling factor of all pi */;

1 sf =computeScalingFactor({pi|pi ∈ P ∧ pi ∩ cl ≠ 0}, V);
/* for each vertex of the mesh */;

ffoorr v ∈ P ddoo

2 XY[v] = XY[v]+ sf ⋅ sgn(ori(cl.v)) ⋅ ;

MASeg

MASeg

�

�

4 Algorithm 1. Processing a single medial axis segment.

acceptable, informative results in areas that are well
suited to the approach (that is, the Midwest, New Eng-
land, California, New York, and Pennsylvania).

Robustness and stability
Noise and error in the input data set can lead to prob-

lems in the medial axis transforms. Although treating
these problems is outside our work’s scope, practical
solutions based on pruning strategies and simplification
exist.4 In addition, several authors have suggested gen-
erating cartograms from decimated maps, mitigating
some of these issues.

Extensions of the algorithm
One problem with the proposed algorithm is that

the global polygon’s medial axes might not let us
locally adjust certain regions with high area error
(see, for example, Figure 3a). Previous experiments
with an interactive scanline-based cartogram algo-
rithm suggest that manually placing additional scan-
lines in such regions can improve the resulting
cartograms (see Figure 7a).

One approach to locally adjusting regions is to cluster

regions with area errors in the same
direction⎯that is, they all must
expand or contract (see Figure 7b).
We compute a medial axis for each
such cluster and then apply the M-
CartoDraw algorithm. We process
the cluster regions in order of
decreasing aggregate area error.

We can further extend the cluster-
based approach by computing the
medial axis of each polygon in the
input map. Figure 7c shows the
polygons and their associated scan-
lines. Again, we consider each poly-

gon’s scanlines in order of decreasing area error.

Evaluation and applications
We implemented our algorithm in C++ using the

LEDA library5 on Microsoft Windows and Linux. We per-
formed our tests on a 1.5-GHz Intel Xeon server with 4
GBytes of main memory (although we only needed 15
MBytes) under Linux. On the whole, our cartograms are
competitive with those from previous approaches (see
the “Previous Work” sidebar).

Effectiveness
Figure 8 shows M-CartoDraw’s output for the usage of

a telecommunication service in the US. The figure shows
cartograms of volume for this service at four points in
time in one day (midnight, 6 a.m., noon, and 6 p.m.
EST). All of the cartograms are of satisfactory quality in
the sense that the US geography is clearly recognizable,
while the area error for each cartogram is less than 5
percent. A polygon’s color represents its area error.
White polygons are perfectly distorted with an area
error close to 0; blue polygons should be larger; and red
should be smaller. The visualizations show interesting

IEEE Computer Graphics and Applications 65

7 Extensions of the cartogram algorithm: (a) interactive scanlines, (b)
cluster region medial axis, and (c) all-polygon medial axis.

(a)

(b)

(c)

8 US telephone call volume data over a 24-hour period
(times are EST): (a) midnight, (b) 6:00 a.m., (c) noon,
and (d) 6:00 p.m. Color represents the area error.
White polygons are distorted with an area error close
to 0; blue polygons should be made larger; and red
polygons should be made smaller.

(a) (b)

(c) (d)

service usage patterns reflecting the different time zones
in the US.

As Figure 9a illustrates, M-CartoDraw yields better
results than the interactive scanline approach1 with
respect to the area and shape error trade-off. To mea-
sure shape distortion, we used the Fourier-based
method as discussed earlier.1 In Figure 9a, each point
corresponds to an intermediate solution found in one
M-CartoDraw step. At the beginning, the area error is
larger than 36 percent. With more iterations, the area
error decreases and the shape error grows because of
distortions that are introduced. As expected, the curve
traces from the lower right corner to the upper left cor-
ner until the area error is small enough, the area error
difference is less than its threshold, or the shape distor-
tion is larger than a given threshold. In most cases, shape
and area error have an inverse relationship. Figure 9a
also shows that the final shape error depends on the area
error at the beginning. This is because maps that start
with a high area error must be more heavily distorted
than maps with lower area error. The image also implies
that the slope of the curve for M-CartoDraw is more con-
stant than that of the interactive scanline approach,1

which we attribute to the irregularity of human inter-
actions. Figure 9b shows the total area error for M-Car-
toDraw (with 3-percent area error). This figure
demonstrates that the proposed approach is preferable
to both our earlier non-medial-axis-based work1 and the
hybrid optimization-based approach.6

Efficiency
We performed experiments to evaluate the proposed

algorithm’s efficiency. For this study we didn’t include
the computation time needed to simplify (decimate) the
input map, because we treat this as an external one-time
precomputation. The main advantage of our approach
is its low running time: times range from 6 seconds for
the US state map to 5 minutes for the US country map
(with about 3,000 polygons). Finding the medial axis
takes about half the total running time. This compares
favorably with the prior best-known approach,6 which
(adjusted for current CPUs) takes about two orders of
magnitude longer to compute a cartogram, as Figure 9c
demonstrates. The figure compares M-CartoDraw’s run-
ning time with that of Kocmoud and House’s approach.6

The test assumed that the algorithm runs on a 120-MHz
computer with 32-MByte RAM. Note that the Y scale is
logarithmic.

Figures 10a through 10j illustrate trends in the US
population by decade during the 20th century. Each
decade is colored according to population increase or
decrease: the scale from dark to light blue, through
white to red corresponds to the range in census values
from high immigration to (low) emigration. The maps
are normalized so they don’t reflect changes in the total
population by year. The global polygon of the US in
2000 with 270 million inhabitants is colored black, and
the global polygon of the population in 1900 with 76
million is colored gray.

A key goal for M-CartoDraw is to handle large maps.
Figure 11 shows the population of Germany on a map
with about 400 polygons. We used a unipolar color map

Feature Article

66 March/April 2005

Tobler Pseudo
 Cartogram

M-CartoDraw

Kocmoud House

CartoDraw
 Interactive

CartoDraw
 Automatic

200

150

100

50

0

Tobler Pseudo
Cartogram

M-CartoDraw

Kocmoud House

CartoDraw
 Interactive

CartoDraw
 Automatic

102 103 104

Computation time (seconds)

US state map

0.1 0.2 0.3 0.4
Relative area error

Relative area error(a)

(b)

(c)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

To
ta

l s
ha

p
e

er
ro

r

CartoDraw Interactive
M–CartoDraw

9 Effectiveness and efficiency comparison using the US state map: (a)
shape versus area error, (b) area error comparison, and (c) computation
time comparison.

to visualize this population data.
The cartogram helps focus attention
on highly populated regions. The
area errors of the three largest poly-
gons and the yellow polygons in the
northwest are almost zero, with
cities and other highly populated
regions clearly visible.

Because the underlying polygons
don’t change dramatically in every
step (especially when the algorithm
is near termination), to save time we
don’t recalculate the medial axis on
every iteration.

M-CartoDraw took less than five
minutes to compute the cartogram
in Figure 11b. This computation
time is only one magnitude greater
than that needed to compute the US
state population cartogram.

Figure 12 also shows the result of
using texture maps to visualize geo-

IEEE Computer Graphics and Applications 67

10 Immigration trends in the US over the last 100 years: (a) 1910, (b) 1920, (c) 1930, (d) 1940, (e) 1950, (f) 1960, (g) 1970, (h) 1980,
(i) 1990, (j) 2000, and (k) population comparison, 1900 and 2000. Colors correspond to increasing or decreasing population. Dark
blue indicates a high rate of immigration, light blue indicates low immigration, white indicates no change, and light red indicates low
emigration.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

11 County-level map of Germany: (a) original population cartogram and (b) distorted map
using M-CartoDraw. The thicker black lines indicate the German states. A unicolor map
encodes population density. The yellow-green regions (for example, Berlin, Hamburg, and
Munich) are densest.

(a) (b)

graphically related data. Figure 12a is an undistorted
map of the US. Figure 12b shows the US map after we
apply M-CartoDraw. In this population texture car-
togram, the relief is distorted in proportion to the num-
ber of inhabitants.

Figure 13 shows a texture cartogram of New York
state using an almost zero area error transformation.
The cartogram emphasizes the proportion of New York
City in the total population.

Conclusions and future work
Although our algorithm is a significant step toward

fast, effective cartogram generation, open problems
remain. It would be interesting to study general meth-
ods for computing a morph (homotopy) with specified
boundary properties that optimizes some function of
the interior. We can also further generalize our method
of using medial axis segments as scanlines (for exam-
ple, we can apply vectors in the direction of flow from
the medial axis to the boundary). ■

References
1. D.A. Keim, S.C. North, and C. Panse, “CartoDraw: A Fast

Algorithm for Generating Contiguous Cartograms,” Trans.
Visualization and Computer Graphics, vol. 10, no. 1, 2004,
pp. 95-110.

2. S.S. Cairn, Introductory Topology, 1st ed., Ronald Press
Company, 1961.

3. J. O’Rourke, Computational Geometry in C, 1st ed. Cam-
bridge Univ. Press, 1994.

4. M. Foskey, M.C. Lin, and D. Manocha, “Efficient Compu-
tation of a Simplified Medial Axis,” Proc. ACM Symp. Solid
Modeling, ACM Press, 2003, pp. 96-107.

5. K. Mehlhorn and S. Näher, LEDA Platform of Combinatori-
al and Geometric Computing, 1st ed. Cambridge Univ. Press,
1999.

6. C.J. Kocmoud and D.H. House, “Continuous Cartogram
Construction,” Proc. IEEE Visualization, IEEE CS Press,
1998, pp. 197-204.

CC hh rrii ssttiiaann PPaannssee is a doctoral stu-
dent in the Data Mining and Visual-
ization Group at the University of
Constance, Germany. His research
interests include visual data mining
on large spatial data and cartogram
drawing. Panse has an MS in com-

puter science from the Martin-Luther-University Halle-
Wittenberg, Germany. He is a member of the IEEE
Computer Society. Contact him at panse@dbvis.inf.uni-
konstanz.de.

DDaanniieell AA.. KKeeiimm is a full professor
in the Computer Science Department
of the University of Constance. His
research interests include informa-
tion visualization and data mining.
Keim has a PhD in computer science
from the University of Munich. He is

an editor of the IEEE Transactions on Visualization and
Computer Graphics, IEEE Transactions on Knowledge
and Data Engineering, and the Palgrave Information
Visualization Journal. Contact him at keim@dbvis.
inf.uni-konstanz.de.

SStteepphheenn CC.. NNoo rrtthh is head of Infor-
mation Visualization Research at
AT&T Labs, a group in the AT&T
Infolab that studies interactive, high-
performance visualization of large,
complex relational and semistruc-
tured data sets. His research interests

include graph layout and spatial data visualization. North
has a PhD in computer science from Princeton University.
He is a senior member of the IEEE and a member of the
ACM. Contact him at north@research.att.com.

Feature Article

68 March/April 2005

12 US popula-
tion cartogram
with texture:
(a) original
map and
(b) M-Carto-
Draw distorted
map. Map
images provid-
ed by Ray Stern-
er of the Johns
Hopkins Univer-
sity Applied
Physics Labora-
tory, licensed by
North Star
Science and
Technology
(http://www.
landforms.biz/).

(a)

(b)

13 Population cartograms of New York state: (a) original map and (b) M-
CartoDraw distorted map with almost zero area error. We drew map (b)
using a texture extracted from map (a). M-CartoDraw enlarges polygons
where the population density is high.

(a) (b)

