
Importance-Driven Visualization Layouts for Large Time Series Data 
 

Ming C. Hao, Umeshwar Dayal1 
Hewlett-Packard Laboratories, Palo Alto, CA 

 

 

Daniel A. Keim, Tobias Schreck2 

University of Konstanz, Germany 
 
 

 

ABSTRACT 
Time series are an important type of data with applications in 

virtually every aspect of the real world. Often a large number of 
time series have to be monitored and analyzed in parallel. Sets 
of time series may show intrinsic hierarchical relationships and 
varying degrees of importance among the individual time 
series. Effective techniques for visually analyzing large sets of 
time series should encode the relative importance and 
hierarchical ordering of the time series data by size and 
position, and should also provide a high degree of regularity in 
order to support comparability by the analyst. 

In this paper, we present a framework for visualizing large 
sets of time series. Based on the notion of inter time series 
importance relationships, we define a set of objective functions 
that space-filling layout schemes for time series data should 
obey. We develop an efficient algorithm addressing the 
identified problems by generating layouts that reflect hierarchy- 
and importance-based relationships in a regular layout with 
favorable aspect ratios. We apply our technique to a number of 
real-world data sets including sales and stock data, and we 
compare our technique with an aspect ratio aware variant of the 
well-known TreeMap algorithm. The examples show the 
advantages and practical usefulness of our layout algorithm. 

CR Categories and Subject Descriptors: I.3.3 [Computer 
Graphics]: Picture/Image Generation – Display Algorithms; 
H.5.0 [Information Systems]: Information Interfaces and 
Presentation – General. 

Additional Keywords: Information Visualization; Time 
Series; Space-Filling Layout Generation. 

1 INTRODUCTION 
Time series are a data type of utmost importance in many 

application domains. Information Visualization to date has 
contributed with a variety of helpful techniques to understand 
and analyze time series data, where the focus has been mainly 
to support a limited number of time series, or to consider 
aggregated views of large collections of time series. The Polaris 
[9] system, for example, allows the analyst to easily pivot and 
refine visual specifications of table-based graphical displays. 
Schumann [1] employs a time wheel, where the basic idea is to 
present the time axis in the center of the display, and circularly 
arrange the variables around the time axis. Van Wijk [14] 
introduced a clustering-based visualization to condense multiple 
time series data into a calendar-based view. Shneiderman’s 
interactive pattern search [3] provides fast information retrieval 
on over-laid time series data. Sets of time series consisting of 
hundreds of thousands of observations may be visualized by 

resorting to pixel-based rendering paradigms [2]. 
In this paper, we address the problem of generating 

appropriate visualization layouts for simultaneously viewing 
large sets of time series using the familiar bar or line charts 
drawing methods. Our goal is to allow an analyst to quickly 
perceive relative importance and hierarchy relations within sets 
of time series, while at the same time supporting good 
comparability of the data by highly regular layouts. 

Our contributions are (1) to introduce the idea of importance-
driven layout generation for sets of time series, (2) to formalize 
a set of constraints that an effective layout for comparative 
analysis tasks on large time series data should provide, and (3) 
to provide an efficient algorithm that optimizes the above 
criteria. This paper is organized as follows: Section 2 introduces 
the idea behind the importance-driven layout generation for 
time series data. Section 3 gives a formalization of the problem. 
Section 4 introduces a family of heuristic algorithms for 
generating layouts of non-hierarchical as well as hierarchically 
organized sets of time series. Section 5 presents applications of 
our system to real-world datasets. Section 6 compares our 
approach with an aspect ratio aware space-filling layout 
algorithm, and Section 7 concludes and outlines future work. 

2 BASIC IDEA 
This section discusses our main objectives for laying out 

large collections of time series data. 

2.1 Concept of Importance Relationships of Time Series 
When considering comparative analysis tasks on collections 

of time series, often there can be perceived a partial or total 
intrinsic importance (or interestingness) relation among the 
different time series. Such importance relationships should be 
reflected in the layout. For example, in a sales analysis 
application, the primary importance measure might be the total 
sum of sales numbers in each time series. In a network 
monitoring application, importance relationships may be 
derived from certain performance metrics taken from hosts on a 
network. Or, in a stock trading application, importance 
relationships may be derived from the variance in the stock 
price time series (a risk measure). An effective layout should 
support the perception of importance relations by using the two 
in our opinion most important display properties: position and 
size. 

Regarding position, usually, the objects at the top of a display 
are perceived to be more important than those at the bottom, 
and objects on the left hand side are considered to be more 
important than those on the right hand side in a given display 
row (as subject to convention). Regarding size, larger objects 
are perceived to be more important than smaller objects. These 
natural ways to reflect importance relationships enable an 
analyst to quickly locate the most important objects as the data 
set grows large. In Sections 3 and 4, certain importance 
measures derived from time series data serve as input for our 
layout algorithm, which in turn allocates size and position of 
display partitions into which to place the time series. 
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We note that our approach is inspired in part by the degree of 
interestingness (DOI) [8][7] concept. The DOI concept models 
the interestingness of each data element in a data set as a 
function of it’s a-priori interestingness, and it’s distance to one 
or more current focus centers. The DOI concept can be used to 
generate interactive focus-and-context displays using distortion 
techniques. In terms of the DOI concept, here we only consider 
the a-priori interestingness component in the data set. 

2.2 Space-Filling Layout of Time Series Data 
Time series are usually displayed using bar or line charts. 

Traditionally, multiple time series are accommodated by 
overlaying them in one common chart, or by using tabular, 
equal-sized layouts. Both approaches are problematic due to 
clutter and occlusion (overlaying) and an emerging need for 
scrolling interaction (tabulating) as the data set grows large. 
Also, the possibilities for encoding importance and hierarchical 
relationships are limited in these approaches. We therefore 
propose an overlap-free space-filling approach to time series 
layout to addresses both importance-coding and scalability. 
Overlapping layouts are also possible to address scalability, but 
we currently do not investigate this line of design. 

When laying out sets of bar or line charts in a space-filling 
display, it is not sufficient to allocate rendering space by 
assigning position and size according to importance, but 
regularity is a vital criterion for comparing time series. 
Regularity consists of the aspect ratio, which should be 
favorable for rendering a given number of time steps within 
each time series display partition. The aspect ratios of multiple 
time series should be homogeneous. Also, the alignment of the 
partitions should be as good as possible, and the number of 
unique horizontal scales should be low. Experiments we 
performed suggest that a low number of horizontal scales might 
be more important than a low number of unique vertical scales. 
We can support this observation by the fact that in bar and line 
charts, horizontal scale influences the perception of value 
sequence and duration of time intervals. Vertical scale 
influences perception of value magnitudes. While value 
perception can be easily supported using color maps, supporting 
perception of time sequence on many different horizontal scales 
is nontrivial, especially in space-filling layouts. 

An additional requirement for importance-driven time series 
layout arises if there are also hierarchical relationships present 
among the set of time series. In a sales scenario, for example, 
the world might be divided into regions, and these regions 
themselves might be further subdivided into sub regions. For 
each sub region there may exist a time series for a given 
product by observing respective sales figures for consecutive 
points in time. Note that the embedding of hierarchical layout 
constraints may conflict with the importance-driven layout 
generation. 

Figure 1 illustrates the importance-driven layout of 24 time 
series from a stock application using our algorithm and 
assuming a given importance-measure. Our approach achieves a 
highly regular layout trading off some proportionality between 
importance and size in favor for the regularity of the layout. 

3 FORMAL PROBLEM DEFINITION 
In this section, we formalize certain requirements that an 

effective importance-driven time series layout should provide. 

Let },,{ 1 nTSTSTS K=  denote a set of n time series objects, 

where a time series iTS  is a set of iTS  pairs of real-valued 

observation with corresponding time stamp. )( ii TSI  is a real-

valued function defined on time series, giving the application-

specific, normalized importance measure: 

{ }niII ii ,,1,110 K∈=∧≤≤ ∑ . The task of the layout 

algorithm is to partition an initial (root) rectangular display area 

R  of width wR.  and height hR.  into a partition ),( TSRP  

consisting of one sub rectangle )( ii TSR  for each time series 

iTS . Let hRwRR iii .*.=  denote the area of iR , and units 

are normalized such that 1== ∑ iRR . Let cxRi .  and 

cyRi .  denote the x and y coordinates of the center of mass 

of iR , with the display origin located in the south-west corner. 

3.1 Constraints for an Unstructured Set of Time Series 
(1) Size proportionality constraint. The area of each time 

series rectangle should be proportional to the importance of the 

time series: 

min!→−∑ ii IR  

(2) Space-filling and non-overlapping constraint: 

{ } ∅=∩≠∈∀∧= jii RRjinjiRR :,..1,U  

(3) Weighted aspect ratio error constraint as a function of 

iTS  for a user-definable parameter c, which is modeling the 

relation between time series length and desired aspect ratio: 

Figure 1: Importance-driven layout of 24 stock price time 
series with favorable aspect ratios and high overall regularity 
generated by our algorithm (Section 4). Size and position of 
the bar chart bounding rectangles approximately indicate the 
importance relations. The color map and the bar height 
indicate normalized stock price. 
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(4) Ordering constraint. If Ii>Ij, then Ri should either be left 

of Rj in the same horizontal row, or Ri should be above of Rj. 

Practically, a threshold parameter ε  can be used to decide 

whether two rectangles are considered to be on the same 

horizontal row: 

( ) ∨≤−∧<⇒> εcyRcyRcxRcxRII jijiji ....  

( )cyRcyR ji .. >  

(5) Aspect ratio regularity constraint. Let unique_ar(P) be 

the number of unique aspect ratios in the tessellation P. Then: 

min!)(_ →Parunique  

3.2 Additional Constraints for the Structured Case 
(6) Rectangular containment constraint. Let HU be the set of 

time series contained in the sub tree rooted at node U in the 

time series tree (Section 4.3). Let MBR(HU) be the minimum 

axis-parallel bounding box containing the time series rectangles 

for HU: 

( ) min!)( →−∑ ∈UTreenodes Hi iU
U

RHMBR U  

(7) Hierarchical ordering constraint. Let HU and HV be two 

sets of time series contained in two disjoint sub trees rooted at 

nodes U and V of the time series tree (Section 4.3). Apply the 

ordering constraint (4) on all pairs of minimum axis-parallel 

bounding boxes MBR(HU) and MBR(HV). 

3.3 Solving the Problem 
The above constraints are a postulation regarding certain 

properties that our layouts should provide. We recognize there 
exist conflicts between the criteria. E.g., it will not be possible 
to find a layout that simultaneously realizes the optimum for the 
error functions in (1) and (5) for most data distributions, given 
that we obey (2). So, theoretically, we would only be able to 
find layouts optimal in the Pareto sense, and have to select one 
from these such that an appropriately combined, scalar error 
function is optimized. Practically, finding optimal solutions 
involving multiple competing objectives of this type is a 
complex problem for which we do not expect to find efficient 
algorithms. In Section 4, we therefore propose a heuristic 
algorithm which is motivated by the above constraints, and 
which is producing visually satisfying results in interactive 
time. In addition, the defined criteria may serve to 
experimentally evaluate the effectiveness of layout algorithms 
with respect to these criteria. 

The role of the importance measure Ii (for short: i-measure) 
is to impose the importance relation on the set of time series. 
Usually, appropriate i-measures depend on the specific 
application context in which the visualization is to be deployed, 
and will have to be obtained from a domain expert. Suitable I-
measures may be as simple as the min or max aggregation 

functions (e.g., when monitoring for network performance 
bottlenecks), or they may involve complex time series analysis 
algorithms (e.g., when searching for certain local patterns in 
trading data). In our system, we have implemented a set of 
basic i-measures, which already serve well for many 
applications: 
 

• Average, sum, min, max, count, deviation; 
• Exception count for some preset threshold; 
• Count of local extreme in the time series; 
• The average difference between adjacent values. 

 
In addition, a number of optional time series preprocessing 
methods have been implemented, e.g., offset and amplitude 
normalization, smoothing, and missing value interpolation. 

4 LAYOUT ALGORITHMS 
In this Section, we give an efficient recursive importance-

driven mapping algorithm (ID-Map) by introducing the notion 
of display masks, and considering unstructured and structured 
sets of time series data. 

4.1 Display Mask Selection and Splitting Policies 
Our algorithm recursively maps ordered subsets of time 

series data into display partitions, which are constructed by a 
set of so-called display masks. A display mask is a scheme for 
partitioning any given rectangle into a certain number of sub 
rectangles, reflecting importance-relations by size and position 
of the sub rectangles as given by the mask definition (mask 
structure). For allocating a given set of time series, a mask 
chooser first analyzes the distribution of i-measures, and then 
selects from a set of predefined display masks the mask best 
accommodating the present distribution of i-measures. We start 
by defining two masks suited for two salient types of 
distributions. The uneven mask contains three partitions and is 
appropriate when the distribution of i-measures is skewed. The 
other mask is the even mask and is selected if the distribution of 
i-measures is rather uniform. We use Pearson’s Mode Skewness 
(PMS) [12] as the skewness scale. Figure 2 illustrates. 

Considering mask split-point determination, we define three 
different policies, each one implementing a certain trade-off 
between size-proportionality and regularity. Policy A splits an 
input rectangle at fixed relative positions, irrespective of the i-
measures underlying the data to be allocated. For the even 
mask, policy A splits both horizontally and vertically at 1/2 
edge length. For the uneven mask, it vertically splits at 2/3, and 
horizontally at 1/2 edge length. Policy A results in maximum 
regularity, but does not guarantee linear reflection of 
importance-relationships purely by size. In policy B, the 
rectangle is split vertically in linear proportion to sums of the 
underlying i-measures, but horizontally it is split at 1/2 edge 
length. This results in less regularity, but improves size-
proportionality. Finally, policy C performs all the splitting in 
linear proportion to the sums of underlying i-measures, 
guaranteeing linear size-proportionality at the expense of 
regularity. 

Figure 2: Uneven and even splitting masks (split policy A). 



We note that for now, we fix the splitting policy based on 
user preference when generating the layout. We note that it 
would also be possible to perform the policy selection in a data-
dependent way, but leave this for future work. Regarding the 
size proportionality and regularity tradeoff, we note that the 
importance relations are always encoded in the overall nesting 
structure of the display, and specialized techniques supporting 
nesting structure perception exist [16]. 

4.2 Algorithm for Unstructured Sets of Time Series 
For generating an importance-driven layout for an 

unstructured set of time series, we first determine the i-measure 
for each time series object, and build a list of time series sorted 
decreasingly by i-measure. Evaluating Pearson’s Mode 
Skewness of the i-measure distribution of the list, we select the 
appropriate display mask MS from a set M of predefined masks. 
As MS defines n=|MS| partitions, we also partition the sorted list 
of time series into n equal-sized ordered subsets of time series. 
We then assign each time series subset in order to the respective 
display partition as defined by MS, and recursively proceed with 
all subsets and display partitions, until each time series has been 
allocated to one display rectangle each. 

4.3 Algorithm for Structured Sets of Time Series 
A set of hierarchically organized time series can be held in a 

rooted tree: Inner tree nodes encode the hierarchy; each leaf 
node of the tree holds one time series. The tree can be totally 
ordered by i-measures. To this end, we first aggregate the i-
measures from all leaf nodes bottom-up along the hierarchy, 
until each inner tree node is labeled with an aggregated i-
measure. We then sort the children of all inner tree nodes by 
their respective i-measure labels, obtaining a totally ordered 
rooted time series tree. Figure 3 illustrates. 

The algorithm from Section 4.2 can then be applied by 
considering sorted lists of time series tree nodes, instead of 
sorted lists of time series. Generation of the layout is initialized 
by inputting the tree root to the algorithm, and it terminates 
once all branches of the tree have been processed, and all time 
series have been allocated. Figure 4 illustrates the allocation of 
inner tree nodes from a geo-related hierarchy to the partitions of 
an uneven display mask. The example assumes that the region 
West has a significantly higher aggregated i-measure than 
regions North and East. Figure 5 gives the algorithm for the 
hierarchical case in pseudo code. As will be shown in Sections 
5 and 6, this scheme is able to produce regular layouts which 
favor importance-driven perception and fast visual comparison 
of many different time series simultaneously. 

5 APPLICATION 
We have integrated the ID-Map algorithm into a data mining 

visualization system [4] at Hewlett-Packard Laboratories 
(HPL). To make large volumes of time series datasets easy to 
explore and interpret, the system provides many interactive 
capabilities. The user may set the attributes for hierarchically 
partitioning the dataset, as well as the color map and time 
intervals. I-measure and layout parameters can be changed on 
the fly to analyze data from different perspectives. Drill-down 
techniques allow to view the data in detail over certain time 
intervals and sub hierarchies. The system provides interactive 
update rates and can also accommodate real-time data streams. 

We applied the ID-Map technique to a number of real-world 
sales, network monitoring, and finance datasets. The results 

Figure 5: ID-Map algorithm for the structured case. 

Input: 
• Totally ordered rooted tree T with i-measure labels at all tree nodes, and 

one time series at each leaf node; 
• Set M of predefined layout masks, where each mask Mi in M implements 

an ordered partition of rectangular space R into n=|Mi| sub rectangles 
R1,…, Rn. 

 
Layout generation: 

• The layout is generated by calling ID_Map(root, rectangle), where 
root is the root node of T, and rectangle is the initial display 
rectangle. 

 
Global: <Set of display masks> M; 
 
Procedure ID_Map ( <List of nodes> L, <Display rectangle> R ) { 

// terminal node: draw the time series 
If ( L contains exactly one leaf node ) { 

drawTimeSeries( L[0].timeSeries, R ); 
 return; 
} 
// single non-leaf node: recursively layout child nodes 
If ( L contains exactly one non-leaf node ) { 

ID_map( L[0].children, R ); 
return; 

} 
// list of nodes: select display mask; layout chunks of nodes 
Select mask MS from M such that MS best represents the
  distribution of i-measure labels from the nodes in L; 
Partition L into n equal-sized, ordered chunks of nodes
  c1,…,cn, where n = |MS|; 
For ( int chunk=1; chunk<=n; chunk++ ) { 

ID_Map( cchunk, Rchunk( MS, R ) ); 
} 

} 

Figure 3. Totally ordered, rooted time series tree. 
Figure 4: Allocation of inner tree nodes to display space. In 
this example, the distribution of aggregated i-measures at 
nodes West, North, and East is assumed to be significantly 
non-uniform. Therefore, an uneven mask is chosen for the 
layout of this level in the hierarchy. 



show the wide applicability and usefulness of this 
visualization technique. For example, using the ID-
Map, the finance team can compare daily sales patterns 
and trends from each time series for planning sale 
promotions. The Internet service group can take 
preventative actions after realizing emerging network 
traffic bottlenecks. Financial analysts can use technical 
indicators such as volatility or momentum indicators to 
layout sets of stock prices from many different 
industries. 

5.1 Sales Analysis 
One of the common tasks of sales managers is to 

improve product sales based on analysis of historic 
data. Analysts need to know what the dominant 
daily/monthly/yearly sales patterns are. Which location 
has continuously high sales, and from which products? 

To answer such questions, we can construct ID-Maps 
like in Figure 6. This map is generated from a real-
world sales dataset from last November (41,778 
invoices). The dataset has three sales regions (West, 
North, and East). Each region has a number of countries 
(e.g., L, C, G in the West region). Each country has a 
number of states (e.g., CC and CB in Country L). There 
are a total of 35 time series, placed by the aggregated 
sales value. 

The general comments of the sales teams in our 
experiments were very positive. They liked to use the 

system, and especially noted it’s 
applicability in the following use cases: 

(1) Summarization of overall sales 
time series in one image, ordered by i-
measures. From the size and position of 
the time series shown in Figure 6, the 
analysts can instantly find three sales 
regions: West (top sales), North 
(medium sales at the bottom left) and 
East (low sales at the bottom right). 
Also, they can quickly find that the sales 
in Country L, state CC are continuously 
high (more orange and red). 

(2) Multiple time series comparison. 
Time series are regularly arranged, with 
good aspect ratios. Analysts can easily 
analyze many different time series in one 
display without overlap. They can zoom 
a subset of time series to an equal scale 
for comparison. 

(3) Hierarchical drill down capability. 
ID-Map allows the analysts to drill down 
to the next level of the hierarchy to find 
the source of the high sales. Figure 7 
shows a drill down from Country L, state 
CC. 

Figure 6: An ID-Map visualizes 35 sales time series and their patterns/trends across 
three regions: The West region, located at the top of the map, has the most important 
(highest) sales, more than the North and East regions. We performed a zoom in on state 
QZ for easy comparison with state QA in the East region. The color map indicates high 
(medium, low) values of $amount by red (yellow, green) 

low 

high

Figure 7. An ID-Map of product sales time series. This map was generated 
by drilling down Country L, state CC by product type, to observe 19 product 
sales time series in colored bar charts. Product A (top of map) has the most 
important sales figures in Country L, state CC. 



5.2 Stock Analysis 
Finance is an application domain where naturally, large sets 

of hierarchically organized time series data occur. For example, 
the GICS standard is a multi-level hierarchical classification of 
the 500 stocks compound in the Standard&Poor’s 500 index. 
Investors, in order to make investment decisions, often need to 
overview, compare, and analyze stocks from specific sectors 
they are interested in. Our algorithm is suited to provide an 
effective overview over sets of categorized stocks, where the 
most important time series are readily perceivable and 
analyzable. Figure 8 shows 30 normalized daily opening prices 
from October and November 2003 of 80 stocks from 9 different 
S&P500 Industries (the data was obtained from [10]). 

For this example, assume we are interested in comparing the 
relative volatility of stocks. In order to identify stocks of 
interest to a risk-seeking investor, we first apply offset- and 
amplitude normalization [11] as preprocessing. We then select 
as the i-measure the average difference between all adjacent 
values of each time series, respectively. This i-measure rates the 
volatility of stock prices. For sector level aggregation, we 
average over the i-measures from all time series contained in 
each of the 9 sectors, respectively. Using this i-measure to 
guide the layout, the ID-Map algorithm maps each two or three 
sectors to one partition of an even mask. From the generated 
layout we learn that the Utilities and Telecommunications 
Sectors (top-left) are the most volatile in this example, as they 

are placed into partition p1 of an even layout. Sectors Energy, 
Health Care, and Materials (bottom-right) are the least volatile 
(placed in p4). The stocks from Utilities are more volatile than 
those from Telecommunications on average (they are placed on 
top of Telecommunications). On the other hand, the distribution 
of volatility among the stocks from Utilities is more uniform 
(ranging 0.018…0.012) than those from Telecom (ranging 
0.022…0.010). This is readily perceivable, as the mask chooser 
lays out the Utilities stocks in an even mask, while it chooses an 
uneven mask for Telecommunication. Using the fixed splitting 
policy A in the layout algorithm, the overall display partitioning 
is highly regular. Note that only three different x-axis scales are 
present; this supports visual comparability of the actual time 
series data. 

6 EVALUATION 
In this section, we compare the ID-Map layout algorithm 

with an aspect ratio optimizing variant of the well-known 
TreeMap layout algorithm. We exemplarily discuss key features 
of both algorithms, and present results obtained from batch 
experiments performed on synthetic data. 

6.1 Aspect Ratio Aware TreeMaps 
TreeMap [15] is an excellent tool for displaying large 

volumes of low-dimensional, hierarchically organized data. By 
design, the original algorithm does not care about the regularity 
of the display it generates, as split points are placed in linear 

Figure 8: Hierarchical ID-Map (split policy A) of a set of 80 time series from 9 different S&P500 Industries. The mask chooser uses 
even and uneven masks to distinguish skewed from uniform stock risk among and within Industries. The i-measure used is normalized 
volatility of stocks; color used in the bar charts indicates normalized stock open price from green (low) through yellow (medium) to red 
(high). 



proportion to sums of underlying measures. While 
proportionality is guaranteed, there is no guarantee for 
regularity. Several variants optimize aspect ratios [5][6][13]. 
Here, we extend the stripe-filling method from [6] to support 
data-dependent target aspect ratios. The original approach aims 
to generate square rectangles, and so the overall aspect ratio of 
the rectangle to be filled determines the orientation of the 
current layout stripe. Here, we consider four possible layout 
orientations in each step (Figure 9, left). We fill in each 
orientation stripe with rectangles until the cumulated sum of 
weighted aspect errors (Section 3.1, constraint 3) is starting to 
increase. We then make the stripe with the lowest cumulated 
error permanent, and continue the layout within the remaining 
rectangle. 

We applied this modification to a data set consisting of 24 
unstructured time series (48 values each), and assuming a 
synthetic, square-like distribution of i-measures following 
f(x)=x2 in [0..1] for each set of time series. For the aspect ratio 
error function, we set parameter c to 1/16. Figure 9 (right) 
shows the result. While we have good horizontally-oriented 
aspect ratios, due to splitting in strict proportionality, the 
number of different x- and y-axis scales is high. Also, the 
rectangles are not aligned at stripe borders. Furthermore, the 
ordering of elements may be discontinuous at stripe borders. 
These facts result in just medium overall regularity of the 
display. 

 

6.2 ID-Map Layout 
Figure 10 (left) shows the application of ID-Map using the 

uneven mask with splitting policy A (fixed split points) on the 
dataset from the preceding Section. We notice the display’s 
high regularity. Due to the recursive allocation of chunks of 
time series to display partitions using fixed splitting, rectangle 
sizes are not guaranteed to be in linear proportion to i-measures. 
Even a reversal of size and i-measure relations may occur (note 
that i-measure relations are always perceivable by the overall 
splitting structure). To improve proportionality, it is possible to 
re-sort the rectangles by size in a top-down/left-right manner 

followed by re-assigning time series to rectangles (Figure 10, 
right). While we maintain the high regularity of the display, we 
obtain better proportionality and avoid the reversal case. 

Splitting policies B and C increasingly trade-off regularity for 
improved proportionality between i-measure and rectangle size. 
The regularity will be reduced, as either vertical (B), or both 
vertical and horizontal splitting (C) is performed in proportion 
to underlying i-measures. To moderate the loss in regularity, we 
can quantize the split points by implementing a ‘snap to grid’-
like splitting function. Figure 11 shows the quantized uneven 
layouts obtained from split policies B and C. Comparing 
Figures 10 and 11, we note that policies B and C improve the i-
measure to size proportionality at the expense of reduced 
regularity, as due to the higher number of different edge lengths 
occurring, the aspect ratio constraints (constraints 3 and 5 in 
Section 3.1) get more stressed. 

 

6.3 Experimental Comparison and Summary 
We also performed batch experiments to obtain numeric 

performance results. We used the algorithms to layout 
unstructured sets of 5 up to 200 time series with 48 values each, 
within a 1280x929 pixel display, again assuming the square-like 
i-measure distribution for each set. We restricted ID-Map to use 
the uneven splitting mask with non-quantized split point 
determination throughout the experiments (we obtained similar 
results with the even mask). 

Figure 12 shows the normalized ordering error (constraint 4 
in Section 3.1) as the fraction of ordering violations among all 
pairs of time series, using a 10 pixel threshold. Figure 13 shows 
the normalized aspect ratio regularity error (constraint 5 from 
Section 3.1) as the fraction of unique aspect ratios among all 
display rectangles. In both metrics, all ID-Map splitting policies 
outperform the aspect ratio aware striping algorithm. 

We note that in other metrics, the striping algorithm performs 
quite well. It guarantees size proportionality (constraint 1 from 
Section 3.1), and does a good job at optimizing data-dependent 

Figure 9: The layout obtained using a modification of the 
algorithm given in [6] (right). While aspect ratios are good, 
overall regularity is rather low. The left image illustrates the 
striping orientations considered during the layout. 

Figure 11: ID-Map using splitting policies B (left) and C 
(right). Split points were snapped to the nearest positions on 
an auxiliary raster grid. 

Figure 10: ID-Map using splitting policy A (left: standard; 
right: after resorting of rectangles). Size proportionality is 
traded off for high overall display regularity. Figure 12: Ordering error results. 

Ordering error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 20 40 60 80 100 120 140 160 180 200

Number of time series

Er
ro

r

uneven-A
uneven-B
uneven-C
striping



aspect ratio targets (constraint 3 from Section 3.1). Also, the 
number of unique horizontal scales it produces may be low if 
the algorithm, as depending on the input data, is likely to often 
choose layout orientations vv and hv (see Figure 9). 

To summarize the comparison, we note that ID-Map provides 
high display regularity in terms of good rectangle alignment 
and a low number of different aspect ratios. It largely obeys the 
top-down, left-right ordering of elements in it’s layout. By 
configuring the algorithm to different splitting policies, the user 
can control the tradeoff between size to importance 
proportionality and display regularity according to preference. 
We point out that in many applications it is well possible to 
trade off linear proportionality between time series importance 
and rectangle sizes for regularity. This is because often, 
appropriate importance measures are just approximate, and 
sometimes even ordinal, scales for importance relations among 
time series data, so perfect quantitative reflection might not be 
meaningful anyway. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we have proposed a novel recursive algorithm 

to layout large sets of time series data by their relative 
importance in a space-filling manner. The generated displays 
possess high regularity and horizontal aspect ratios, making 
them suitable for time series visualization. We defined a 
number of objective criteria that suitable solutions should 
provide. We demonstrated the usability of our approach by 
applying it on two real-world datasets, and by comparing it with 
an aspect ratio aware TreeMap variant. Applications are 
manifold, with prominent examples in the business analysis, 
finance, and network monitoring domains, among others. 

Future work involves improving the system by exploring 
additional splitting masks, as well as data-dependent methods to 
quantize split points to simultaneously support regularity, size-
proportionality, and ordering objectives. In certain application 
domains, high data update rates are given which dynamically 
change underlying i-measures and thus, call for dynamic 
updates to the display. How to provide good transitions for such 
necessary structure updates in a monitoring visualization is an 
open problem which we would like to address. Regarding time 
series visualization, we plan to extended the system to also 
support long time series which otherwise would not fit lossless 
on the screen, given the limited display resolutions offered by 
current displays. Finally, we believe main principles of this 
approach will extend to other regularity requiring data types as 
well, e.g., to sequences of images returned by a multimedia 
similarity search system. We also plan to investigate this 
direction. 
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Figure 13: Aspect ratio regularity error results. 
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