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ABSTRACT
We present a novel indexing schema that provides efficient
nearest-neighbor queries in multimedia databases consisting
of objects described by multiple feature vectors. The ben-
efits of the simultaneous usage of several (statically or dy-
namically) weighted feature vectors with respect to retrieval
effectiveness have been previously demonstrated. Support
for efficient multi-feature vector similarity queries is an open
problem, as existing indexing methods do not support dy-
namically parameterized distance functions. We present a
solution for this problem relying on a combination of several
pivot-based metric indices. We define the index structure,
present algorithms for performing nearest-neighbor queries
on these structures, and demonstrate the feasibility by ex-
periments conducted on two real-world image databases.
The experimental results show a significant performance im-
provement over existing access methods.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
analysis and indexing—indexing methods

Keywords
Content-based indexing and retrieval, combination of fea-
tures, nearest neighbor queries

1. INTRODUCTION
The development of multimedia search systems is an im-

portant research issue, due to the growing amount of digital
audio-visual information. For example, in the case of images
and video, the growth of digital data has been observed since
the introduction of 2D capture devices. Also, the acquisi-
tion technology of 3D models by means of 3D scanners is
constantly improving. As we see progress in the fields of ac-
quisition, storage, and dissemination of various multimedia
formats, the development of effective and efficient database
management systems that handle these formats is needed.
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Some of the most important tasks in multimedia databases
are clustering, classification, and retrieval. These tasks all
rely on the definition of a similarity measure between mul-
timedia objects, which depends on the similarity of the ob-
jects’ content. For describing object content, it is possible
to use annotation information, which represents the content
of an object in textual form, or to use characteristics of
the multimedia data itself, the so-called content-based ap-
proach. The latter is the more promising approach, because
in general textual descriptions are manually created, which
is prohibitively expensive, and they are subject to the opin-
ion of the person who creates them. In contrast, content-
based search algorithms allow an implementation of fully
automatic retrieval systems.

To describe multimedia objects under the feature vector
approach, numerical values are extracted from each object
to form feature vectors of typically high dimensionality. For
many multimedia data types (e.g., images, 3D models, au-
dio tracks), a number of extraction algorithms have already
been proposed. In recent studies, e.g., [3], it has been shown
that the usage of combinations of feature vectors can lead
to significant improvements on the effectiveness of the simi-
larity search, but the efficiency problem was not addressed.

Index structures for vector spaces are surveyed in [2].
These data structures were primarily designed to index sin-
gle feature vectors, and they cannot be directly used to index
set of features. Even if one concatenates the feature vectors
and applies standard indexing techniques, the efficiency of
these indices will be poor due to the curse of dimensionality
[2]. The main contribution of this paper is to propose an in-
dex structure based on the so-called pivots, that can be used
to improve the efficiency of similarity search algorithms in
multimedia databases, where each object is described by a
set of different features vectors.

The paper is organized as follows. In Section 2, we mo-
tivate the use of combinations of features and we describe
the canonical pivot-based index structure. In Section 3, we
present our proposed index, describing the nearest-neighbor
(NN) algorithm, and we also show how to use an R*-tree
(in some restricted case) to index the combination of fea-
tures. Section 4 presents the experimental study. Section 5
concludes and outlines our future work.

2. PROBLEM DEFINITION
In this section, we motivate the use of combinations of

feature vectors and depict the canonical index based on piv-
ots, which will be used as the basis for the proposed index
structure.
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2.1 Combination of feature vectors
By their definition, individual feature vectors (also re-

ferred to as signatures or descriptors) rely on certain aspects
of multimedia objects, which are sampled from the objects
to form vectors of real values. Usually, two different feature
extraction algorithms describe different, and often comple-
mentary information of an object. The use of combinations
of descriptors can improve the retrieval effectiveness of the
similarity search [7, 3]. This approach avoids the disad-
vantages of using a single feature only, which captures only
certain characteristics of an object, and leads to a more com-
plete search, usually resulting in higher retrieval precision.

Let F = {f1, . . . , fN} be a set of feature vectors, each of
them associated with a distance function di, i = 1, . . . , N .
We define the combined distance function D(x, y) as the nor-
malized linear combination of the distances between x and
y,

D(x, y) =

N∑
i=1

wi ·
di(xi, yi)

nFactori
.

The normalizing factors nFactori are necessary in case
that the feature vectors have different dimensionalities or
component scales. For example, one can define nFactori
as the maximum distance between two objects in the fea-
ture space defined by fi. The weights wi allow us to give
more importance to those feature vectors that are more rel-
evant to the similarity search. The basic case is to assign
wi = 1, 1 ≤ i ≤ N , i.e., all the vectors are equally important
for the combined distance computation. The computation
of wi can also be dynamically done, i.e., their values depend
on the query object [3]. Also, in interactive systems, user
relevance feedback may be obtained in order to adjust fea-
ture vector weightings. If all weights are positive and all
distance functions are metrics, then it follows that D is also
a metric. We assume this property for the rest of the paper.

A simple linear scan is enough to perform NN queries us-
ing the combined distance function D, but using an index
structure the search should be faster. Unfortunately, index
structures designed for single feature vectors cannot be di-
rectly used, in the general case, on sets of features vectors.

2.2 Pivot-based indexing
There are many similarity search indices based on pivots

[5], which are selected objects from the database. Here we
describe the canonical index structure based on pivots and
the algorithm for performing range searches using this index.
In Section 3.3 we will discuss how to adapt this algorithm
to implement a nearest-neighbor search. The pivot-based
index will be the basis for our proposed index structure.

Let (X, d) be a feature space (usually a vector space),
where X is the universe of valid objects and d is a met-
ric on the space, that is, d satisfies the properties of strict
positiveness (d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y), symme-
try (d(x, y) = d(y, x)), and the triangle inequality (d(x, z) ≤
d(x, y)+d(y, z)). Let U ⊆ X be a set of objects (a database),
with size |U| = n. Given a query object q ∈ X, a range query
(q, r)d is defined as the objects in U that are within distance
r to q, that is (q, r)d = {u ∈ U, d(u, q) ≤ r}.

Given a query (q, r)d and a set of k pivots P = {p1, . . . , pk},
pi ∈ U, by the triangle inequality it follows that d(pi, x) ≤
d(pi, q) + d(q, x), and also that d(pi, q) ≤ d(pi, x) + d(x, q)
for any x ∈ X. From both inequalities, it follows that a

lower bound on d(q, x) is d(q, x) ≥ |d(pi, x)− d(pi, q)|. The
objects u ∈ U of interest are those that satisfy d(q, u) ≤ r,
so all the objects that satisfy the exclusion condition (1) can
be discarded, without actually evaluating d(q, u).

|d(pi, u)− d(pi, q)| > r for some pivot pi. (1)

The pivot-based index consists of the kn precomputed dis-
tances d(pi, u) between every pivot and every object of the
database. Therefore, at query time it is only necessary to
compute the k distances between the pivots and the query q,
d(pi, q), in order to apply the exclusion condition (1). The
list of candidate objects {u1, . . . , um} ⊆ U that cannot be
discarded with the exclusion condition (1) must be directly
checked against the query object.

The way how pivots are selected affects the efficiency of
the search algorithms. We will use the incremental selection
technique described in [4] to select sets of “good pivots”, as
well as random selected pivots.

Note that this canonical pivot-based algorithm (and all
its variants) does not allow the usage of dynamic weights in
the distance function.

3. PROPOSED INDEX STRUCTURE
We will study two different cases: When the weights are

fixed (fixed-weighted combination) and when the weights are
dynamic and may change on each query (dynamic-weighted
combination).

3.1 Fixed-weighted combinations
In this case, the combined distance has the form

Dfix(x, y) =

N∑
i=1

Wi ·
di(xi, yi)

nFactori
,

where the weights Wi are constant values. As the com-
bined distanceD is a metric and a static function, the canon-
ical pivot-based index can be used without any modification.

3.2 Dynamic-weighted combinations
In this case, the combined distance has the form

Ddyn(x, y, w) =

N∑
i=1

wi(·) ·
di(xi, yi)

nFactori
,

that is, the weights are dynamically assigned on each
query. It follows that the distance function is not static
and depends on the query object. Therefore, it is not possi-
ble to precompute the distance matrix between pivots and
objects, because we do not know a priori the set of weights
and they may change with each query.

To overcome this problem, we propose a novel index struc-
ture that builds the distance matrix at query time. The
index consists of N matrices of the form

Mi =
1

nFactori
·

 di(p1, u1) . . . di(pk, u1)
...

. . .
...

di(p1, un) . . . di(pk, un)

 .
It follows that the combined distance between pivot ps,

1 ≤ s ≤ k, and object ut, 1 ≤ t ≤ n, can be computed as

1181



Ddyn(ut, ps, w) =

N∑
i=1

wi(·) ·Mi[s, t].

Intuitively, at query time we dynamically build a pivot
index table that reflects the submitted combination weights,
and we then use this table to discard objects in order to save
computation time.

3.3 Nearest-neighbor search algorithm
We use a modification of the NN algorithm sketched in

[5] to perform this type of queries using our proposed index.
This algorithm can be easily modified to implement k-NN
queries.

The first algorithm (Figure 1) is used in the case of fixed-
weighted combination of feature vectors. The second algo-
rithm (Figure 2) is used in the case of dynamic-weighted
combination of feature vectors.

NN-Search(U, P, Index, q)

1 Compute Dfix(pi, q), 1 ≤ i ≤ k
2 mindist← minki=1{Dfix(pi, q)}
3 NN ← parg minki=1{Dfix(pi,q)}

4 for each u ∈ U − P do

5 for each p ∈ P do

6 if |Dfix(p, q)−Dfix(p, u)| > mindist then

7 Discard object u and break

8 endif

9 endfor

10 if u not discarded and Dfix(q, u) < mindist
then

11 mindist← Dfix(q, u)

12 NN ← u

13 endif

14 endfor

15 return NN

Figure 1: Nearest-neighbor search algorithm, fixed-
weighted combination.

The idea of the NN search algorithm is as follows. Firstly,
we compute the distances between all pivots and the query
object q, and the pivot whose distance to q is minimum
(mindist) will be the first NN candidate. Then, for each
object u ∈ U that it is not a pivot, the exclusion criterion
is applied, using as tolerance radius the distance from the
candidate NN to the query object. If u cannot be discarded,
we compute the distance between u and q. If this distance
is smaller than mindist, then we set u as the new NN can-
didate and we update mindist. The process ends when all
the objects from U have been checked.

3.4 Combination of feature vectors and spatial
access methods

It is possible to use a spatial access method (e.g., the R*-
tree [1]) in the case of fixed-weighted combination of fea-
tures, but with one restriction: The distance function must
be the Manhattan distance l1(x, y) =

∑t
i=1 |xi − yi| for all

feature vectors. Then, the combined distance function is
defined as

NN-Search(U, P, Index, q, w)

1 Compute Ddyn(pi, q, w), 1 ≤ i ≤ k
2 mindist← minki=1{Ddyn(pi, q, w)}
3 NN ← parg minki=1{Ddyn(pi,q,w)}

4 for each u ∈ U − P do

5 for each p ∈ P do

6 Compute Ddyn(p, u, w)

7 if |Ddyn(p, q, w) −Ddyn(p, u, w)| > mindist
then

8 Discard object u and break

9 endif

10 endfor

11 if u not discarded and Ddyn(q, u, w) <
mindist then

12 mindist← Ddyn(q, u, w)

13 NN ← u

14 endif

15 endfor

16 return NN

Figure 2: Nearest-neighbor search algorithm,
dynamic-weighted combination.

D(x, y) =

N∑
i=1

Wi ·
l1(xi, yi)

nFactori
.

It follows that D(x, y) is equivalent to a concatenation of
all weighted and normalized feature vectors followed by a
computation of the Manhattan distance over the concate-
nated vectors (note that this is not true for the dynamic-
weighted combination case!). Thus, it is guaranteed that
the retrieved answer using the R*-tree will be the correct
one. Note that the dimensionality of the vectors stored in
the R*-tree will be equal to the sum of the dimensionalities
of the N feature vectors that conforms the concatenation,
which can result in a very high dimensionality.

4. EXPERIMENTAL RESULTS
We performed a number of NN queries using two real-

world databases, and computed the average response time.
We used the Manhattan distance as the distance function
for all feature vectors. For constructing the pivot-based in-
dices, we used random as well as good pivots. All feature
vectors were normalized by the estimated maximum distance
between two points in the space (for each feature vector, re-
spectively). As the different weighting schemas affect the
effectiveness but not the efficiency of the search, we only
used uniform weighting in all experiments.

We implemented our proposed NN search algorithm and
compared it against a linear scan and a R*-tree with bulk
loading (best efficiency). We used the R*-tree implemen-
tation from the Spatial Index Library [6]. All indices were
stored in main memory and optimized for this scenario. The
platform on which the experiments were run is a PC with
a Pentium IV 2.4 Ghz processor and 1 Gb of main mem-
ory. As efficiency measures, we used the CPU time needed
to compute the NN queries and the number of discarded
objects by the index.
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4.1 Corel image features
The Corel image features contains features from 68,040

images extracted from a Corel image collection. The fea-
tures are based on the color histogram (32-D), color his-
togram layout (32-D), co-occurrence texture (16-D), and
color moments (9-D). This database is available at the UCI
KDD Archive [8]. We used a subset of this database con-
sisting on 66,615 images, because there were some missing
features for some of the images (we included only those ob-
jects for which complete sets of feature vectors were avail-
able). We selected 10% of the images from the database at
random to be used as query objects.

Figure 3 shows the results for both fixed-weighted and
dynamic-weighted cases, using random and good pivots.
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Figure 3: Total time to perform all queries with the
Corel image features database.

Table 1 shows a comparison of the proposed index struc-
ture with a linear scan and the R*-tree. The results show
that the R*-tree is more than 9 times slower than a simple
linear scan, due to the high dimensionality of the concate-
nated feature vectors (89-D). In contrast, the proposed index
structure shows a speed up of almost 7 times in the case of
fixed-weighted combination, and a speed up of 3.5 times in
the case of dynamic-weighted combination. The results also
show that the best results are obtained using good pivots.

Method # opt. Time Improv.
pivots (msec)

Linear scan - 64.84 -
R*-tree (fix) - 597.5 -9.21x

Rnd. piv. (fix) 28 11.43 5.67x
Good piv. (fix) 20 9.39 6.91x
Rnd. piv. (dyn) 8 21.45 3.02x
Good piv. (dyn) 16 18.04 3.59x

Table 1: Corel image features.

Another measure for the effectiveness of the index is the
number of discarded objects on each query. Figure 4 shows
the average number of discarded objects per query. With
20 good pivots, the index is able to discard 50% of the ob-
jects, thus avoiding all those distance computations. Using
more pivots does not pay off, because the extra compar-
isons against pivots are more expensive than computing a

distance. Therefore, we could expect that the index will per-
form better with very high dimensional databases, where a
distance computation is expensive.
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Figure 4: Average number of discarded objects,
Corel image features database.

4.2 Corel images database
This database [10] contains several features obtained from

images of a subset of the Corel Gallery 380,000 package. The
database contains 6,192 images classified into 63 categories.
Six features vectors of very high dimensionality (184-D, 165-
D, 784-D, 625-D, 784-D, and 30-D) were computed for each
image. The feature vectors include color histogram, texture,
and convolution descriptors (see [10] and [9] for details on
the feature vectors).

Figure 5 shows the results for both fixed-weighted and
dynamic-weighted cases, using random and good pivots.
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Figure 5: Total time to perform all queries with the
Corel images database.

Table 2 shows a comparison of the proposed index struc-
ture with a linear scan and the R*-tree. The results are very
similar to those presented in Section 4.1. Using the pro-
posed pivot-based index, we obtained an improvement over
a linear scan of almost 4 times for the fixed-weighted com-
bination, and more than 3 times for the dynamic-weighted
combination. Again, the best results were obtained using
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good pivots. The R*-tree was almost 12 times slower than
a linear scan on the database. The concatenation of the six
feature vectors results in a combined vector of 2,572-D.

It is interesting to note, that on 2,572-D vectors the R*-
Tree performs only 12 times slower than linear scan, consid-
ering it performs about 9 times slower on just 89-D vectors.
This can be attributed to the fact that already with 89-D
almost all MBRs in the index overlap, and the increase in
overlap is only sublinear in the increasing dimensionality.

Method # opt. Time Improv.
pivots (msec)

Linear scan - 175.12 -
R*-tree (fix) - 2,048.76 -11.70x

Rnd. piv. (fix) 256 53.99 3.24x
Good piv. (fix) 256 46.14 3.80x
Rnd. piv. (dyn) 256 65.14 2.69x
Good piv. (dyn) 128 54.10 3.24x

Table 2: Corel images database.

Figure 6 shows the average number of discarded objects
per query. The index is able to discard more than 50% of
the objects with 128 good pivots.
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Figure 6: Average number of discarded objects,
Corel images database.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a pivot-based index for combi-

nations of feature vectors. It has been shown previously that
combinations of features can improve the effectiveness of the
similarity search. This work complements these studies, ad-
dressing the efficiency problem of searching using more than
a single feature to describe a multimedia object. We de-
scribed a novel index structure and a NN search algorithm
for both the fix-weighted and the dynamic-weighted cases,
respectively.

The experimental results show that for fix-weighted com-
binations, the proposed pivot-based index performs very
well. We observed an improvement up to a factor 7x over lin-
ear scan in the experimental results. For dynamic-weighted
combinations, the proposed index also improves the effi-
ciency of the search up to a factor of 4x over linear scan.
The R*-tree was an order of magnitude slower than linear

scan. This can be explained for the extremely high dimen-
sionality that the concatenated feature vector has. It is well
known that the performance of all spatial access methods
degrades with dimensionality, a fact known as the curse of
dimensionality. Thus, we do not expect that any spatial
access method will be able to deal appropriately with a con-
catenation of feature vectors.

We plan in our future work to propose a cost model for
our pivot-based index, as well as to study the behavior of
this index when stored in secondary memory.
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