IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Visualization of Geo-spatial Point Sets via Global Shape
Transformation and Local Pixel Placement

Christian Panse, Member, IEEE

Mike Sips, Member, IEEE

Daniel A. Keim, Member, IEEE

Stephen C. North, Senior Member, IEEE

Abstract— In many applications, data is collected and indexed by geo-spatial location. Discovering interesting patterns through
visualization is an important way of gaining insight about such data. A previously proposed approach is to apply local placement
functions such as PixelMaps that transform the input data set into a solution set that preserves certain constraints while making
interesting patterns more obvious and avoid data loss from overplotting. In experience, this family of spatial transformations can
reveal fine structures in large point sets, but it is sometimes difficult to relate those structures to basic geographic features such as
cities and regional boundaries. Recent information visualization research has addressed other types of transformation functions that
make spatially-transformed maps with recognizable shapes. These types of spatial-transformation are called global shape functions.
In particular, cartogram-based map distortion has been studied. On the other hand, cartogram-based distortion does not handle point
sets readily. In this study, we present a framework that allows the user to specify a global shape function and a local placement
function. We combine cartogram-based layout (global shape) with PixelMaps (local placement), obtaining some of the benefits of

each toward improved exploration of dense geo-spatial data sets.

Index Terms—Geo-spatial Data, Shape Transformation, Cartogram, Pixel Visualization

1 INTRODUCTION

Many existing and emergent applications collect and reference data by
geo-spatial location. Most electronic transactions of daily life, such as
purchasing goods by credit card or making phone calls, are recorded
for subsequent data analysis. Such event records usually include geo-
graphic locations and other attributes. For example, records of credit
card transactions specify a purchaser (with an associated name and ad-
dress), the point of sale, total amount, and possibly items and prices.
Telephone call records also include locations of communication end-
points, billing accounts, and sometimes cell phone zones and other
geo-coordinates. Census tables are another familiar example that in-
corporates geographic and statistical attributes.

Large data sets, containing millions of records or more, are nearly
impossible for people to understand quickly by inspecting the raw
data. Visualization is essential to surveying and exploring them. Al-
though geographic and statistical visualization have been studied for
many decades, the scale of the data we have now presents new chal-
lenges. Displaying large point sets on conventional maps is problem-
atic. Overplotting obscures data points in densely populated areas,
while sparsely populated areas waste space and convey scant detailed
information. Small clusters are difficult to find — they are not notice-
able enough, and are sometimes even occluded by large clusters. Fig-
ure 2 illustrates these two problems on a traditional map.

A common approach to visualization is to apply local placement func-
tions that transform the input data set into a solution set that preserves
certain constraints while making certain patterns more obvious. Pre-
viously we proposed a pixel-oriented method called PixelMaps for vi-
sualizing large spatial datasets [8]. This approach combines kernel
density-based clustering with a point relocation technique that pre-

o Christian Panse is now with the Functional Genomics Center - Uni [ETH
Zurich, Switzerland, E-mail: cp @fgcz.ethz.ch.

o Mike Sips is now with the Max Planck Center for Visual Computing and
Communication, Stanford University, USA, E-mail: ms@pixelmap.org

o Daniel A. Keim is with University of Konstanz, Germany, E-mail:
Daniel. Keim@uni-konstanz.de.

o Stephen C. North is with AT&T Research Labs, NJ, USA, E-mail:
north@research.att.com.

Manuscript received 31 March 2006; accepted 1 August 2006, posted online 6
November 2006.

For information on obtaining reprints of this article, please send e-mail to:
tveg @ computer.org.

serves local clusters and avoids overplotting. It assigns each input
data point to a unique 2-D screen pixel, trading off absolute and rela-
tive position against clustering to achieve pixel coherence. In practice,
we noticed that PixelMaps can reveal fine structures, but it may be dif-
ficult to relate them to geographic features such as locations of cities
or regional boundaries.

Recent research has also addressed layout functions that optimize vi-
sualization constraints to preserve recognizable features in visualiza-
tions. In particular, cartograms are map transformations that preserve
shapes and relationships between map regions [3]. There exist sev-
eral cartogram algorithms, see [11] for an overview see. Classic car-
tograms preserve an input map’s topology, while scaling polygonal
elements according to an external parameter vector [6]. Cartograms
seem more easily interpreted than PixelMaps, though they do not ad-
dress overlap problems or pixel coherence.

In this study, we demonstrate how PixelMaps and cartogram layout
may be composed to meet some of the challenges of large-scale geo-
visualization.

2 PROBLEM DEFINITION

We consider the display of point sets on maps. A map is represented
by a polygonal mesh. The points of the input set are assumed to have
one or more associated statistical attributes. Informally, our goal is to
show clusters and other relationships between points, determined by
both locations and statistical values.

By considering just one statistical attribute at a time, we can inter-
pret geo-spatial data sets as points in 3—-D: the two geo-spatial dimen-
sions and a third statistical dimension. We note that real-world data
set distributions are often highly nonuniform, and data points form
readily-identifiable 3—D point clouds. For example, figure 1 shows a
household income distribution data set in the 3-D space spanned by
longitude, latitude, and median household income.

In this paper, we assume that every data point is important and does
not replace, summarize, aggregate or overplot individual data points.
For example it is of major importance in the detection of fraud where a
data point represents a customer or in the analysis of networks where a
data points is a server/router. In both cases, conclusions may be invalid
if we overplot individual data points. The result could be that we sus-
pect our best customers of fraud and may lose them, or we identify the
wrong server as out of order and then shut down the whole network.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 1. Input XY = {xyo,...,xyy_1 } often exhibits 3-D point clouds even
in small real-world examples. This example shows 3000 data points (1%)
from the U.S. Year 2000 Median Household Income [12])

2.1 Synthesis of Global Shape and Local Placement

These issues identified in the previous section lead us to propose three
constraints for point set visualization:

e Overlap elimination

e Preservation of point positions

o Clustering of similar values

e Preservation of map shapes and their relationships

(see section 3.1.1 and section 3.2.1 for more details).

In practice, simple heuristic placement of data points on land-covering
maps that preserves positions and emphasizes clustering typically also
exhibits artifacts, such as spiral effects, especially in dense areas (fig-
ure 2).

Arbitrarily-distorted maps tend to hide geo-spatial relationships be-
tween clusters and other structures. Such visualizations show too
much elementary information within an unusual geometry, and can po-
tentially encourage wrong conclusions. The practical benefit of such
visualizations seems low [9].

Global properties can contribute toward accuracy and readability or
interpretability of plots of large point sets. Our goal is to (a) repre-
sent dense areas so as to preserve some of the important structure of
the original geographical space (global shape) and (b) allocate all data
points to unique display pixels, even in dense regions (local place-
ment). In other words, we seek to show as many data points as possi-
ble, close to their original positions, while determining a good trade-
off between shape distortion and the degree of overlap.

We approach this by decomposing the problem into separate map
transformation and point relocation problems. The solution assigns
each point to a unique pixel location, with the objective of showing all
the points, but making it possible to relate features to the original map.

2.2 Input
The input is a point set, a global map, and the pixilated display space:

e Set of input points XY = {xyo, . 7xyN,l}
xXy; = (xyfxyl‘) is the original position of each point and
S1(xyi),-..,Sk(xy;) are its associated statistical parameters. It
is likely that we have many data points i and j whose positions

are very close or even identical, i.e. xy; =~ xy; if XY is large (see
figure 1).

e Global Map M = {py,...,pr}
defined by a set of connected simple polygons pi,...,px (a
polygonal mesh)

e Display space DS C Z2
DS ={0,...,xmax — 1} X {0, ..., Ymax — 1}, where xmqx and ymax
are the extents of the pixel display window.

2.3 Output

The output contains the local placement of the data set XY’, the global
shape M’ and the synthesis of the global shape and local placement.

e Set of points XY’ = {xy{,...,xyy_; }
Xy, = (xy;‘ 7xyl’f) is the new position of each point and
S1(xy}), ..., Sk(xy}) are the associated statistical parameters. All
data points are visible, which means each is assigned to a unique
pixel position.

o M ={p),...,p}} defined by a set of connected simple polygons
P\, P} (apolygonal mesh)

e Synthesis of the global shape transformation DS(XY',M') =
p(x(XY,M))
7 = gs(XY,M) defines the global shape and p = Ip(7(XY,M))
provides the local pixel placement.

3 GLOBAL SHAPE TRANSFORMATION 7 AND LOCAL PLACE-
MENT p

The selection of a global shape function gs and a local placement func-
tion /p defines a generic transformation for geo-spatial point set visu-
alization.

3.1 Local Placement Function /p

Local Placement functions play an important role in visualizing large
data sets. In general, a local placement function f transforms an input
data set A into a solution set B, preserving important characteristics
such as position, clustering and, in the case of multidimensional data,
shapes of sub-windows. A reference explains further details [5].

3.1.1 Local Point Placement Constraints

e Opverlap Elimination Constraint The highest priority constraint
is that all data points be visible, which means assigning each to
a unique output pixel position. Formally, this can be expressed

l#] = b,#hj Vi,je {1,..../N—1}

e Position Preservation Constraint Another constraint is that the
output positions should be close to the original ones. That dis-
tance can be measured by taking the absolute displacement of
points from their original positions, or by finding their displace-
ment relative to each other.

— absolute position preservation
N—1

min Y, d(a;,b;)
i=0

— relative position preservation

N-1 N-1
minz 2 (d(bi,bj)—d(a,-,aj))z

i=0 j=0,i#]

PANSE et al.: VISUALIZATION OF GEO-SPATIAL POINT SETS VIA SHAPE TRANSFORMATION AND PIXEL PLACEMENT

stat_value 25000 50000 75000 100000

125000 150000 175000 5200000

Fig. 2. Traditional map with simple repositioning — This dotplot map shows artifacts, such as spiral effects, especially in dense areas such as
Los Angeles County, Cook County and Manhattan. The artifacts are caused by using a simple find next free pixel heuristics on conventional
maps. The data set is U.S. Year 2000 Median Household Income [12]. Visualization transformation n(XY,M) = gs(XY,M) = identity(XY,M) and

p(n(XY.M)) =Ip(n(XY,M)) = find_next_free_pixel(m(XY,M))))

The choice between relative and absolute position preservation
may depend on the application. The distance function d can be
defined by an L™-norm (m = 1 or 2)

Albiby) = 30 =)+ (0] =)

o Clustering Constraint The third constraint involves clustering on
one of the statistical attributes S;,i € {0,...,k}. The idea is to
reposition data points so that those with high similarity in S; are
near each other. In other words, points in the neighborhood of
any given data point should have similar values, yielding pixel
coherence. Formally, we need to define the neighborhood .4 57
of a data point g;, and a distance function dg on the statistical
attribute S.

N—1
min 2 2 ds(S(bi),S(bj))

i=0 bye N A (b))

This neighborhood function sums up the differences in S between
points and their neighbors, and may be defined

N A (bi) = {bjld(bi.by) < e}.

Because S; may have a very non-uniform distribution, it may also
be appropriate to apply non-linear scaling to S before computing
distances dg.

3.1.2 Local Placement and PixelMaps

The local placement p can be seen as the yield of a local placement
function /p that takes an input point set XY to unique positions (while
fulfilling the local placement constraints defined above). Formally, we
can express [p as follows:

Ip : Point — Point with p(XY) = Ip(XY,n(XY,M))

In this study, we focus on PixelMaps because they are intended for
large data sets. PixelMaps assign input points to unique display pixels,
mapping them to highlight clusters and avoid data loss from overplot-
ting.

3.2 Global Shape Function gs

Recent research has contributed new global shape methods for infor-
mation visualization on maps. These methods optimize properties
such as stability, preservation of ordering, and aspect ratio of shapes
(see work on TreeMaps [4] for further readings). We define a global
shape function 7 as follows. The input to the shape function 7 is a vec-
tor of k non-negative real numbers (Iy,...,I;), and the output is a cor-
responding display space partitions (py,...,px) where Area(p;) = ;
Vi€ {1,...,k}. Good choices of 7 scale well to show large data sets.

3.2.1 Gilobal Shape Properties

PixelMaps avoid overplotting and the consequent loss of interesting
patterns and other information. As mentioned, PixelMap transforma-
tions on typical land-covering maps often exhibit unwanted artifacts
in dense areas. Potentially, pre-distortion of map regions to better fit
3-D point clouds to display space would reduce overlap without such
drawbacks.

The challenge is to find a layout function that preserves recognizable
shapes of the input map, while reducing pixel overlap. Note that map
distortion by itself does not preclude overplotting, so local placement
methods are still needed. On the other hand, if we choose an arbitrary
map distortion that is sufficient to avoid all pixel overlaps, it may be
difficult for humans to easily comprehend the result (compare exam-
ples in references [9]).

3.2.2 Global Shape and Cartograms

The global shape 7 can be seen as the result of a global shape function
gs applied to an input set XY, taking it to a new set XY’ of positions
on the input map M. Formally, we can express gs as follows

gs : (Point, Polygon) — Point with T(XY,M) = gs(XY,M)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

(a) Histogram of eight median household income classes.

S

f u

S

(b) Pixel placement step, left to right starting with the smallest cluster.
Color scale is the same as figure 3(a)

Fig. 3. Local Placement p — PixelMap Placement Heuristic is starting from left to right with the smallest cluster. (New York Median Household

Income dataset)

In this study, we focus on cartograms because they are intended
to maintain recognizable global shapes in distortions of geo-spatial
maps. In particular, we use the CartoDraw framework as the global
shape function.

3.3 Generic Framework

The selection of a global shape function gs and a local placement func-
tion /p defines a generic transformation for geo-spatial point set visu-
alization. If we do not take shape into account, and allow only local
point placement, we get a classical PixelMap visualization. We can
express PixelMap PixelMap(XY, M) visualizations as follows:

PixelMap(XY) =Ip(gs(XY,M))
8s(XY,M) =identity(XY,M)

A simple dot plot function DotPlot(XY,M) that handles neither
global shape nor local placement and can be expressed as follows:

DotPlot(XY,M) =Ip(gs(XY,M))
gs(XY,M) =Ip(XY,M) =identity(XY,M)

If we do not handle point set transformation, then we get classi-
cal cartogram visualizations. We can express cartogram visualizations
Carto(XY,M) as follows:

Carto(M) =Ilp(gs(XY,M))
XY,lp=0

The synthesis of both methods can be expressed as

n(XY,M) =gs(XY,M)
p (XY, 7(XY,M)) =Ip(XY,n(XY,M))

Obviously this framework encodes a vast range of possible geo-
spatial visualization methods. In this study, gs is a cartogram transfor-
mation and /p is the PixelMap placement function.

4 SYNTHESIS OF CARTOGRAMS AND PIXELMAPS

Now we can give a detailed definition of the proposed algorithm. The
overall approach is to compute a global shape using CartoDraw or
RecMap, then place the data points into the global shape using Pix-
elMap.

4.1 CartoDraw

The CartoDraw heuristic [6] incrementally repositions a map’s ver-
tices along a series of scan lines. A scan line is an arbitrary line seg-
ment. A scan line defines a set of scan sections orthogonal to the scan
line, where the map’s polygons are intersected by the scan line. For
each section, a target scaling factor is determined according to the area
error factors of the corresponding polygon. In each step of the heuris-
tic, a scan line and scan sections are determined. Vertices are then
repositioned according to the scaling factors and distances to the scan
line. The repositioning may be parallel or orthogonal to the scan lines.
If the shape error introduced by applying a scan line exceeds some
threshold, the repositioning of its candidate vertices is discarded.

To improve convergence toward a solution, scan lines should be ap-
plied to dense map regions. A simple approach to scan line generation
is to use horizontal and vertical line segments positioned on a regular
grid. Significantly better results, though, can be obtained with manual
scan line placement guided by the shape of the input polygons and the
local potential for improvement. Note that the incremental reposition-
ing of vertices per scan line processing step is intentionally kept small,
compared with the expected change in area. This means the same scan
line may need to be applied many times to make large adjustments in
a given part of the map. Figure 4(a) is an example.

As an alternative to generation of cartograms through scanlines on
a regular grid, CartoDraw can also compute cartograms iteratively
through a modified medial axes transformation [7, 10].

4.2 RecMap

Contiguous cartograms are made with the objective of minimizing the
error in desired area while maintaining the input map’s topology and
preserving the shapes of its faces. Nevertheless, there exist combina-
tions of maps and input parameter values such that it is impossible to
eliminate area error [6]. Also, despite the attempt to preserve shapes,
some are necessarily distorted, and the resulting irregular shapes may
be difficult to find and to compare with each other.

As an alternative to contiguous cartograms, RecMap [2] approximates
familiar land covering map regions by rectangles. The areas of its rect-
angles are exactly proportional to given statistical values. To support
the understanding of information represented by a cartogram, RecMap
places the rectangles close to their original positions, and seeks to pre-
serve their adjacencies.

The RecMap construction algorithm works as follow. In the initializa-
tion step, we choose a specific polygon, called the core polygon, to be
the center of the layout or cartogram. Then, in the main step, we con-
struct a sequence of partial layouts or partial cartograms, i.e. starting
with the core polygon, the remaining n — 1 polygons are placed around

PANSE et al.: VISUALIZATION OF GEO-SPATIAL POINT SETS VIA SHAPE TRANSFORMATION AND PIXEL PLACEMENT

(a) CartoDraw

e

—

(b) RecMap

Fig. 4. Global Shape = — The graphics display two possible cartogram
methods. In these particular visualizations, the areas of each region
correspond to the U.S. state census population data.

it one after the other until we have found the complete cartogram.
An example of RecMap’s output can be seen in figure 4(b).

4.3 PixelMap Placement

The PixelMap algorithm runs in three phases. First, it performs an
array-based clustering of the input points, partitioning them into a
fixed number of bins based on a statistical attribute. The number of
bins depends on the application scenario.

Second, a point placement algorithm seeks to place all cluster elements
at free positions near cluster centroids, without overwriting already-
occupied pixels. To solve the pixel coherence problem and make small
clusters visible, all cluster members are placed close to their centroids.
This step is performed one cluster at a time, starting with the smallest.
Small clusters need the fewest free positions, and in practice can often
be placed optimally. If data points cannot be placed without over-
writing already occupied pixels, the placement algorithm searches for
another free region near the centroid where most of the data points can
be placed.

Finally, the placement algorithm continues with the smallest of the
non-cluster bins, assigning the data points to free pixels. Figure 3
shows a sketch of the placement step. Figure 3(b) is an example from
the Manhattan, New York area. The red-blue bipolar colormap en-
codes income classes (blue is low). Color saturation encodes the num-
ber of class members. The color usage described above can be seen in
figure 3(a).

4.4 Synthesis Algorithm
The synthesis (algorithm 1) has the following steps.

e Allocation and Scaling

Algorithm 1: synthesis algorithm
input : PointSet XY, DisplaySpace DS, Map M,
cartogramMethode cm;
output: PointSet XY

hashlist hl(M.numberOfRegions(),NULL);
array A(M.numberOfRegions(), 0);

// Step 1: find global shape
/I compute statistical value for each map region
for each region (r € M) do
for each (xy € XY) do
if r.boundedregion(xy) then
Alr]++;
hl[r].append(xy);
end
end
end

o0 AU R W N

—
| ST]

p—
(]

/I compute cartogram

(M)=carto(M, A, cm);

// find new coords for each data point
XY'=bf(M,x(M),hl);

// Step 2: find local pixel placement
7o f(XY')=PixelMap(XY’, DS);

// Step 3: output to the user
XY” =WALDO(7 o f(XY').DS);

o
£

—
R 1 & W

ST
S e

— Find global shape 7 using cartogram transformation to
equalize density across map regions

— Find new coordinates of data points a; € A using a bilinear
filter

Cluster and Pixel Placement — Find PixelMap placement p to
position data points as clusters within the cartogram layout

o Output to the screen space using WALDO [9]

In the following we describe these steps in detail.

4.5 Step 1: Allocation and Scaling
4.5.1 Step 1.1: Find Global Shape n(M)

First, we approximate the overall density A in the two geographical
dimensions (a},a}) by measuring the local density A(r) in each map
region r. The approximated overall density A(r) is a second order
property that identifies regional, or neighborhood patterns within the
dense point distribution. The potential benefit is to use them in the
identification and visualization of local patterns in the placement step.
In our setting, we can efficiently approximate A(r) by counting the
number of data points in each map region r. This can be done with
a simple point-in-polygon test, or a more efficient data structure to
search planar subdivisions.

Then, we scale the map’s regions to help fit dense, non-uniformly dis-
tributed point sets to unique positions. The idea is scale each region
S0 its area is proportional to its number of data points. Sparse regions
will shrink, and dense areas will expand to enable point assignment
with pixel coherence.

The use of local densities A (r) and CartoDraw [7] enables the identi-
fication of location-based point patterns. The next step describes how
PixelMap uses the global shape 7(M).

4.5.2 Step 1.2: Mapping to New Coordinates

Next, all data points within the original regions of M are relocated
to new positions in the global shape w(M). We apply bilinear filter-
ing, a technique previously studied to make photorealistic images with
texture maps. Our bilinear filter bf maps a data point within a map
region r to a corresponding point on (M (r)). This is applied to each

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

data point of each region a; € hl[r]. we combine the bilinear filter with
a member index hl. More specifically, we determine the map region in
which the data point is located, and then apply the bilinear filter to the
original boundary M(r) and the new boundary (M (r)). The member
index hl can be implemented efficiently as a hash list or as records in
a table.

4.6 Step 2.1: Cluster and Pixel Placement

Finally, after rescaling data points to new positions, PixelMap cate-
gorizes each point as either an element of a cluster or noise. It then
iteratively assigns data points to display space pixels. It processes the
points from densest to least dense region. Within regions, it places
clusters from smallest to largest [8]. This yields the final assignment
of points to display pixels.

4.7 Step 2.2: Label Placement

Text labels are important in readable maps [1]. We assume labels are
text boxes placed with respect to a reference point. (If a reference
point is not provided, there are strategies for inferring one, such as
taking the centroid of the nearest cluster in the input point space.) La-
bels are placed on the output map by aligning them to the transformed
reference point. For examples, see the figures in the following section.
Although we do not deal with the problem of eliminating overlapping
labels, this could be handled by applying a standard technique to the
transformed labels. In the pixel plots of that paper we scaled the top
most pixels of a county by a squar-root function.

4.8 Step 3: Presentation

We use our Wide Area Layout Data Observer (WALDO), a pixel-based
visual exploration system that combines several relevant interaction
techniques, to show the result to the data analyst. WALDO allows a
data analyst to adjust visualizations interactively to satisfy data explo-
ration objectives.

5 APPLICATION EXAMPLES

Some examples of the synthesis of cartograms and PixelMaps using
application data help to illustrate its properties. Figure 2 shows the
United States Year 2000 Median Household Income database. A con-
ventional map has many areas with a high degree of overlap. The out-
put of the synthesis algorithm, see figure 5, shows its advantages. We
can see detailed structures in Manhattan area and Los Angeles County
not visible in the conventional map. Global shape preservation by car-
togram preprocessing enhances visualization of these areas.

5.1 Census Demographics Analysis

The examples are based on U.S. Census Bureau demographics [12].
These datasets are available for multiple census levels: states, coun-
ties, and blocks. For every census block, the total number and loca-
tions of households, median income, median gross rent and price index
of vacant homes are listed.

5.1.1 Median Household Income on USA National Level

The first examples, figure 5 and figure 6, shows U.S. Year 2000 Me-
dian Household Income. The plot shows that New York City and Los
Angeles County are areas of high population. The densest regions are
allocated enough space to place all data points without occlusion and
to show clusters. Some details of the distribution of median incomes
can be identified. For example, one can locate features such as Central
Park in Manhattan. We observe on the U.S. National Level plot that
there are high income clusters on the East Side of Central Park, and
in suburbs of Chicago but not its downtown neighborhood. In the San
Francisco area we can identify Silicon Valley; the income in this small
area is significantly greater than average.

5.1.2 Housing on State Level

Figures 8 is a view of the State of New York. We can notice high
gross rents ($1500-2000 USD per month) in areas of Manhattan and
Queens, and low rents in the Bronx and Brooklyn. The gross rent is
higher (around $1000 USD) than the rest of the state. Particularly,

high income households are found on the east side of Central Park
(recognizable as a rectangular void in the plot). The house price index
indicates that it is expensive to buy a home in Manhattan, and it is
slightly less expensive near Central Park than in the SoHo district (to
its south).

The example, figure 7, shows the Median Household Income of the
State of New York. We observe that there are high income clusters on
the East Side of Central Park.

6 CONCLUSION & FUTURE WORK

In this study we proposed and demonstrated a method of visualizing
large geo-spatial point sets. The method combines a global shape
transformation function gs with a local point relocation function Ip.
Each of these functions can be selected to favor a particular set of con-
straints and objectives.

Our study focused on the composition of cartograms (which reallo-
cate area so as to preserve recognizable shapes) with PixelMaps that
handle the assignment of individual points to unique pixels in 2-D
screen space, trading off absolute and relative position preservation
and clustering to achieve pixel coherence. This composition provides
a capability that neither cartograms nor PixelMaps alone provide.
Initial experiments show that a synthesis of cartograms with Pix-
elMaps offers an improvement over standalone PixelMaps in avoiding
artifacts and preserving recognizable features of the input map.

The framework of global shape and local placement can be applied to
classical infovis techniques. The aim is to solve some of the major
problems such as overplotting in parallel coordinates.

7 ACKNOWLEDGMENTS

The authors thank the anonymous referees for their comments toward
the improvement of this report. This work was supported by the Max
Planck Center for Visual Computing and Communication.

REFERENCES

[1] J. Christensen, J. Marks, and S. Shieber. An empirical study of algo-
rithms for point-feature label placement. ACM Transactions on Graphics,
14(3):203-232, 1995.

[2] R. Heilmann, D. A. Keim, C. Panse, and M. Sips. RecMap: Rectangular
Map Approximations. In InfoVis 2004, IEEE Symposium on Information
Visualization, Austin, Texas, pages 33—40, October 2004.

[3] D. H. House and C. J. Kocmoud. Continuous cartogram construction.
In VIS "98: Proceedings of the Conference on Visualization 98, pages
197-204, Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[4] Human-Computer Interaction Lab — University of Maryland. TreeMap
home website, 2006. http://www.cs.umd.edu/hcil/
treemap/, March 2006.

[5] D. A. Keim. Designing pixel-oriented visualization techniques: The-
ory and applications. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 6(1):59-78, January—March 2000.

[6] D. A. Keim, S. C. North, and C. Panse. Cartodraw: A fast algorithm for
generating contiguous cartograms. [EEE Transactions on Visualization
and Computer Graphics (TVCG), 10(1):95-110, 2004.

[7] D. A. Keim, S. C. North, and C. Panse. Medial-Axis-based Cartograms.
IEEE Computer Graphics and Applications, 25(3):60-68, May/June
2005.

[8] M. Sips, D. A. Keim, S. C. North, and C. Panse. Pixel based visual mining
of geo-spatial data. Computers & Graphics (CAG), 28(3):327-344, June
2004.

[9]1 M. Sips, C. Panse, D. A. Keim, and S. C. North. Visual data mining in
large geo-spatial point sets. IEEE Computer Graphics and Applications
(CG&A), September-October 2004, 24(5):36—44, September 2004.

[10] R. Tam and W. Heidrich. Shape simplification based on the medial axis
transform. In VIS "03: Proceedings of the Conference on Visualization
’03, pages 481-488, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[11] W. R. Tobler. Thirty five years of computer cartograms. Annals, Assoc.
Am. Geographers, 94(1):58-73, March 2004.

[12] United States Department of Commerce. Census Bureau website, 2006.
http://www.census.gov/, March 2006.

PANSE et al.: VISUALIZATION OF GEO-SPATIAL POINT SETS VIA SHAPE TRANSFORMATION AND PIXEL PLACEMENT

Fig. 5. Census Demographic Analysis. United States, Year 2000 Median Household Income. n(XY,M) = gs(XY,M) = CartoDraw(XY,M)

130000 175000 200001

Fig. 6. Census Demographic Analysis — United States, Year 2000 Median Household Income. (7(XY,M) = gs(XY,M) = RecMap(XY,M))

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 7. Census Demographic Analysis. New York State, Year 2000 Median Household Income. n(XY,M) = gs(XY,M) = RecMap(XY,M)

Fig. 8. Census Demographic Analysis. New York State, Year 2000 House Price Index. n(XY,M) = gs(XY,M) = CartoDraw(XY,M) (without labeling).
The labeling can be switched off by the user.

